首页 | 本学科首页   官方微博 | 高级检索  
     检索      

黑土农田冻结-融化期土壤剖面温度变化特征
引用本文:王一菲,郑粉莉,周秀杰,覃超,富涵,左小锋,刘刚,张加琼.黑土农田冻结-融化期土壤剖面温度变化特征[J].水土保持通报,2019,39(3):57-64.
作者姓名:王一菲  郑粉莉  周秀杰  覃超  富涵  左小锋  刘刚  张加琼
作者单位:西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;中国科学院水利部水土保持研究所;黑龙江省气象数据中心
基金项目:国家自然科学基金面上项目“黑土区多种外营力互作的坡面侵蚀过程与机制”(41571263);国家重点研发计划战略性国际科技创新合作重点专项“黑土侵蚀防治机理与调控技术”(2016YFE0202900)
摘    要:目的]研究东北黑土区农地土壤温度变化特征,为冻融作用程度量化分析和冻融作用对土壤侵蚀影响提供基础数据。方法]利用2015—2018年黑龙江省宾州河流域典型农地2 m土壤剖面11月至翌年4月土壤温度观测资料以及气温数据,分析了冻结和融化过程中土壤温度变化特征以及土壤温度对气温变化的响应,确定土壤冻结与融化过程中耕层土壤冻融循环次数。结果] 11月至翌年2月的冻结期,土壤温度随土层深度的增加而增加;3—4月份土壤温度梯度发生反向改变,当土壤完全消融后,土壤温度随着土层深度的增加而递减,土壤最大冻结深度为80 cm。研究结果还表明,0—60 cm土层的土壤温度均与气温呈极显著正相关,其相关性随土壤深度增加而减小;而80 cm以下土层,土壤温度均与气温呈负相关。结论]研究区土壤冻结和融化过程分别呈单向冻结和双向融化现象,冻融循环主要发生在农地耕层0—20 cm土层,其年最大冻融循环次数分别为12次和7次,为设计黑土冻融循环模拟试验提供了数据支持。

关 键 词:土壤温度  冻融循环  气温  东北黑土区
收稿时间:2019/3/8 0:00:00
修稿时间:2019/4/22 0:00:00

Soil Profile Temperature Variation in Farmlands During Freeze-thaw Period in Mollisol Region
Wang Yifei,Zheng Fenli,Zhou Xiujie,Qin Chao,Fu Han,Zuo Xiaofeng,Liu Gang and Zhang Jiaqiong.Soil Profile Temperature Variation in Farmlands During Freeze-thaw Period in Mollisol Region[J].Bulletin of Soil and Water Conservation,2019,39(3):57-64.
Authors:Wang Yifei  Zheng Fenli  Zhou Xiujie  Qin Chao  Fu Han  Zuo Xiaofeng  Liu Gang and Zhang Jiaqiong
Institution:Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China,Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China;Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China,Heilongjiang Meteorological Data Center, Harbin, Heilongjiang 150000, China,Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China,Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China,Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China,Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China and Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
Abstract:Objective] This study explored the characteristics of soil temperature changes in farmlands of Mollisol region in Northeast China in order to provide basic data for quantifying the degree of freeze-thaw action and its impacts on soil erosion.Methods] Based on the data of soil temperature in 2 m soil profile and air temperature from November to next April in 2015-2018 at the typical farmland in Binzhou River basin of Heilongjiang Province, we analyzed the characteristics of soil temperature variation and its responses to air temperature changes during freeze-thaw processes and freeze-thaw times in plough layer in farmlands.Results] The soil temperature increased with the increase of soil depth from November to next February, while declined with the increase of soil depth when the soil was completely melted. The maximum frozen depth was 80 cm in farmlands of the research region. Meanwhile, there was a significant positive correlation between soil temperature in 0-60 cm depth and air temperature, and this correlation decreased with the increase of soil depth. In contrast, soil temperature under 80 cm depth was negatively correlated with air temperature.Conclusion] There was a unidirectional freezing and bidirectional thawing in the study area. The freeze-thaw action mainly occurred at 0-20 cm in the topsoil layer of farmland, both maxinum freeze-thaw cycle times were 12 and 7, respectively, which provided the scientific basis for the design of simulated Mollisol freeze-thaw cycle experiments.
Keywords:soil temperature  freeze-thaw cycle  air temperature  Mollisol region in Northeast China
本文献已被 CNKI 等数据库收录!
点击此处可从《水土保持通报》浏览原始摘要信息
点击此处可从《水土保持通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号