首页 | 本学科首页   官方微博 | 高级检索  
     


Plant traits related to yield of wheat in early, late, or continuous drought conditions
Authors:M. van Ginkel  D.S. Calhoun  G. Gebeyehu  A. Miranda  C. Tian-you  R. Pargas Lara  R.M. Trethowan  K. Sayre  J. Crossa  S. Rajaram
Affiliation:(1) CIMMYT, Lisboa 27, Apdo. Postal 6-641, 06600 Mexico D.F., Mexico
Abstract:Bread wheats (Triticum aestivum L.) were evaluated for plant characteristics contributing to grain yield and plant adaptation under various drought patterns. The usefulness of these traits as explicit selection criteria in developing drought tolerant wheat varieties was investigated in three experiments. Cultivars from four germplasm groups, representing the four relevant major and distinct global wheat growing environments, were grown under the respective simulated early, late, continuous and no drought conditions by manipulating irrigation in north western Mexico. Additionally, 560 advanced lines from the CIMMYT breeding program were grown under late drought conditions, and 16 randomly selected advanced genotypes were studied in more detail under late and no drought conditions. In these three studies, the association between yield in drought-stressed environments and yield in non drought-stressed environments was interpreted to reflect genotypic high yield potential, mainly by way of high biomass development. However, yield potential only partly explained the superior performance under drought. For each pattern of drought stress, particular and often different plant traits were identified that further contributed specific adaptation to the distinct drought stress conditions. Knowledge of these traits will be useful for developing CIMMYT germplasm for specific drought-stressed areas. Ultimately, these studies demonstrate that both yield potential and specific adaptation traits are useful criteria in breeding for drought environments, and should be combined to achieve optimum performance and adaptation to drought stress. This revised version was published online in August 2006 with corrections to the Cover Date.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号