首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of expected increase in precipitation intensities on soil loss—results of comparative model simulations
Authors:A. Michael, J. Schmidt, W. Enke, Th. Deutschl  nder,G. Malitz
Affiliation:aTechnical University Freiberg, Soil and Water Conservation Unit, Agricolastrasse 22, D-09599 Freiberg, Germany;bMeteo-Research, 14532 Stahnsdorf, Waltraudstr. 20, Germany;cDeutscher Wetterdienst, Berlin, Germany
Abstract:The impact of the expected climate change on the frequency and extent of soil erosion processes is hardly assessable so far. This is mainly because available models of climate change reliably produce at best mean daily precipitation data, whereas erosion is the result of extreme but short time rainfall and runoff events, normally lasting no longer than a few hours. The frequency and intensity of these extreme rainfall events are expected to increase in some regions, which could lead to increased erosion rates. Mathematical models are able to describe erosion rates under conditions of these extreme events, however, so far prognostic meteorological data necessary for the application of these models are not available.The use of a new method for the projection of meteorological time series and their extremes using global climate simulations [Enke and Spekat, 1997, Enke, 2000, Enke, 2003, Enke et al., 2005 and Enke et al., in press] permits for the first time an approximation of future soil loss.This research is based on simulated, high resolution data for extreme rainfall events in the period of 2031–2050, which reproduces the mean frequency, intensity and duration of future events with high precipitation intensities relevant to erosion within the investigated seasonal period from June to August. The simulations are performed for two exemplary sites in Saxony, based on the EROSION 2D model (Schmidt, J., 1990. A mathematical model to simulate rainfall erosion, Catena, Suppl. 19), which is a process-based soil erosion model for simulating soil erosion and deposition by water on single slopes. Simulated precipitation for the 2031–2050 time period is used to model soil loss, and results are compared to soil loss based on 20 years of measured precipitation from 1981 to 2000.The simulation results allow the impacts of climate change on erosion rates to be quantified by comparing current climate with predicted, future climate. However, expected changes in land use due to changed economic conditions are not taken into account in this analysis.
Keywords:Climate change   Soil erosion   Soil erosion model   Precipitation intensity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号