首页 | 本学科首页   官方微博 | 高级检索  
     

基于轻量化高效层聚合网络的黄花成熟度检测方法
引用本文:吴利刚,陈乐,周倩,史建华,马宇波. 基于轻量化高效层聚合网络的黄花成熟度检测方法[J]. 农业机械学报, 2024, 55(2): 268-277
作者姓名:吴利刚  陈乐  周倩  史建华  马宇波
作者单位:山西大同大学
基金项目:国家自然科学基金项目(12375050)、山西省教育科学“十四五”规划课题项目(GH-220178)、山西省基础研究计划项目(202303021211330)、山西省研究生实践创新项目(2023SJ290)、山西大同大学基础科研基金项目(2022K1)、山西大同大学研究生科研创新项目(2023CX07)和山西大同市科技计划项目(2023015)
摘    要:针对黄花传统人工识别效率低,辨识标准不统一的问题,提出基于轻量化和高效层聚合过渡网络的黄花成熟度识别方法LSEB YOLO v7。首先,引入轻量化卷积对高效层聚合网络和过渡模块进行轻量化处理,减少模型计算量。其次,在特征提取与特征融合网络之间增加通道注意力机制,提升模型检测性能。最后,在特征融合网络中,优化通道信息融合方式,使用双向特征金字塔网络替换Concatenate,增加信息融合通道,持续提升模型性能。实验结果表明:与原始模型相比,在黄花成熟度检测中,改进后的LSEB YOLO v7模型参数量和浮点运算量分别减少约2.0×106和7.7×109。训练时长由8.025 h降低至7.746 h,模型体积压缩约4 MB。同时,训练精确率和召回率分别提升约0.64个百分点和0.14个百分点,mAP@0.5和mAP@0.5:0.95分别提升约1.84个百分点和1.02个百分点。此外,调和均值性能保持不变,均为84.00%。LSEB YOLO v7算法可均衡模型复杂性与性能,为黄花成熟度检测和智能化采摘设备提供技术支持。

关 键 词:黄花  成熟度  深度学习  注意力机制  信息融合机制  轻量化
收稿时间:2023-10-10

Maturity Detection Method for Hemerocallis citrina baroni Based on Lightweight and Efficient Layer Aggregation Network
WU Ligang,CHEN Le,ZHOU Qian,SHI Jianhu,MA Yubo. Maturity Detection Method for Hemerocallis citrina baroni Based on Lightweight and Efficient Layer Aggregation Network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(2): 268-277
Authors:WU Ligang  CHEN Le  ZHOU Qian  SHI Jianhu  MA Yubo
Affiliation:Shanxi Datong University
Abstract:To address the problems of low efficiency of traditional manual identification and inconsistent identification standards, a ripening identification method for Hemerocallis citrina baroni based on lightweight and efficient layer aggregation network LSEB YOLO v7 was proposed. Firstly, lightweight convolution was introduced to lighten the efficient layer aggregation network and transition module to reduce the model computation. Secondly, the channel attention mechanism was added between the feature extraction and feature fusion networks to improve the model detection performance. Finally, in the feature fusion network, the channel information fusion method was optimized, and the bi-directional feature pyramid network was used to replace concatenate to increase the information fusion channels and continuously improve the model performance. The experimental results showed that compared with the original algorithm, in the Hemerocallis citrina baroni maturity detection, the number of parameters and floating-point operations of the improved LSEB YOLO v7 algorithm were reduced by about 2.0×106 and 7.7×109, respectively, and the training time was reduced from 8.025h to 7.746h, and the model volume was compressed by about 4MB. Meanwhile, the training precision and recall were improved by about 0.64 percentage and 0.14 percentage, respectively. The mAP@0.5 and mAP@0.5:0.95 were improved by about 1.84 percentages and 1.02 percentages, respectively. In addition, the harmonized mean remained unchanged at 84.00%. It was evident that the proposed LSEB YOLO v7 algorithm solved the problem of the paradox between model complexity and performance, and provided technical support for intelligent ripening and harvesting inspection equipment for Hemerocallis citrina baroni.
Keywords:Hemerocallis citrina baroni  maturity  deep learning  attention mechanism  information fusion mechanism  lightweight
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号