首页 | 本学科首页   官方微博 | 高级检索  
     

基于模态曲率改变率与神经网络的桥梁损伤识别
引用本文:刘春城,徐健,黄金花,杨杰. 基于模态曲率改变率与神经网络的桥梁损伤识别[J]. 东北林业大学学报, 2009, 37(10)
作者姓名:刘春城  徐健  黄金花  杨杰
作者单位:东北电力大学,吉林,132012
基金项目:交通部西部科技项目,吉林省教育厅"十一五"科技发展计划项目 
摘    要:将模态曲率改变率和BP神经网络理论相结合,提出了桥梁结构损伤识别的新方法,据此识别结构损伤位置和损伤程度,并以一简支梁结构和一座连续梁桥为例进行了损伤识别.计算结果表明,该方法可以获得令人满意的识别精度.在结构参数化有限元模型存在误差的情况下,该方法仍然可以获得较好的识别效果,可应用于复杂桥梁结构体系的损伤识别.

关 键 词:桥梁结构  损伤识别  模态曲率改变率  BP神经网络  噪声

Damage Identification of Bridge Based on Variation Ratio of Curvature Mode and Neural Network
Liu Chuncheng,Xu Jian,Huang Jinhua,Yang Jie. Damage Identification of Bridge Based on Variation Ratio of Curvature Mode and Neural Network[J]. Journal of Northeast Forestry University, 2009, 37(10)
Authors:Liu Chuncheng  Xu Jian  Huang Jinhua  Yang Jie
Affiliation:Liu Chuncheng,Xu Jian,Huang Jinhua,Yang Jie(School of Civil & Architecture Engineering,Northeast Dianli University,Jilin 132012,P. R. China)
Abstract:A new identification method of damaged bridge structure is given to identify the location and extent of damages based on variation ratio of curvature mode and BP neural network. The damage identification method is tested by a simply supported beam and a continuous beam bridge. Results showed that a satisfactory precision could be obtained by this method even if the errors existed in the structural parametric FEM analysis of bridges. This method could also be applied to the damage identification of complex b...
Keywords:Bridge structures  Damage identification  Variation ratio of curvature mode  BP neural network  Measured noises  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号