首页 | 本学科首页   官方微博 | 高级检索  
     

苯嗪草酮疏果剂对苹果边果营养与激素含量的影响
引用本文:薛晓敏,韩雪平,聂佩显,董放,王金政. 苯嗪草酮疏果剂对苹果边果营养与激素含量的影响[J]. 农业工程学报, 2021, 37(7): 206-211
作者姓名:薛晓敏  韩雪平  聂佩显  董放  王金政
作者单位:山东省果树研究所,泰安 271000
基金项目:现代农业苹果产业技术体系(CARS-27)
摘    要:为明确苯嗪草酮疏果剂对苹果边果的疏除作用,以9年生天红2号/SH38/八棱海棠为试材,在最大边果直径6 mm左右时喷300 mg/kg苯嗪草酮2次,清水为对照,生理落果后调查坐果率及坐果比例;喷药后7、9、11、17、29 d采集处理和对照边果,测定氮磷钾矿质营养,淀粉、葡萄糖、果糖、蔗糖和山梨醇碳水化合物,可溶性蛋白...

关 键 词:激素  营养  苯嗪草酮  坐果率  苹果
收稿时间:2020-09-22
修稿时间:2021-02-07

Effects of fruit thinning agent "metamitron" on nutrition and hormone content of apple lateral fruits
Xue Xiaomin,Han Xueping,Nie Peixian,Dong Fang,Wang Jinzheng. Effects of fruit thinning agent "metamitron" on nutrition and hormone content of apple lateral fruits[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 206-211
Authors:Xue Xiaomin  Han Xueping  Nie Peixian  Dong Fang  Wang Jinzheng
Affiliation:Shandong Pomology Institute, Taian 271000, China
Abstract:The work aimed to clarify the effects of metamitron as the fruit thinning agent on the apple fruit setting rate as well as the mineral nutrition, carbohydrates, and hormones of lateral fruitlets, thus providing a reference for applying chemical thinning technology of apples. Thirty 9-year-old apple trees (Tianhong 2/SH38/Malus micromalus) were used as test materials, and 300-ppm metamitron solution was sprayed 2 times when the diameter of the biggest lateral fruits were around 6 mm. Spraying water was used as the control. The setting rate of inflorescence and flower were investigated after physiological fruit drop. The mineral nutrition, carbohydrate, soluble protein, and hormone content of lateral fruits were measured after spraying 7, 9, 11, 17, and 29 d. The total nitrogen, phosphorus, and potassium were determined by semi-micro distillation, Mo-Sb-Vc colorimetry, and flame photometer, respectively. Glucose, fructose, sorbitol, sucrose, and hormone contents were determined by HPLC, while the soluble protein content was determined by Coomassie brilliant blue staining. The results showed that the fruit setting rate of inflorescence and flowers decreased by 17.95 and 27.63% compared with the control, respectively. The proportion of inflorescence with single fruit increased by 5.28 times in the treatment, while that of sitting three fruits and more decreased significantly, which was 47.91% of the control. The results of fruit setting rate and fruit setting ratio showed that metamitron could significantly reduce the fruit setting rate, and the single fruit rate was high, with the setting fruits distributed evenly. The total nitrogen content was higher than that of the control at all stages, and the difference between the control and the treatment was significant except 7 and 9 d. The total phosphorus and potassium contents of almost all treatments were significantly higher than those of the control. The total phosphorus contents of 11 and 29 d after spraying was 2.05 and 1.67 times of the control, and the total potassium content was 1.93 and 1.51 times of the control, respectively. The results of mineral nutrition showed that the fruit thinning effect of metamitron was not caused by the deficiency of inorganic nutrients. The content of the soluble protein decreased significantly compared with the control, and the content of each treatment period was 71.42, 72.37, 69.68, 64.20, and 86.02% of the control, respectively. The starch content of metamitron treatment was significantly higher than that of the control, with an increase of 5.57%-37.20%, yet the content of sucrose, glucose, fructose, and sorbitol decreased with different degrees. Therefore, the soluble carbohydrate content decreased significantly to 9.55%-52.57%. Soluble carbohydrates are the direct nutrients for the development of young fruits, so fruit thinning of metamitron may be caused by insufficient supply of soluble carbohydrates. The abscisic acid content generally increased after the treatment, and the ABA content in each period was 1.37-3.11 times that of the control. The ratio of (Z+GA3+IAA)/ABA decreased significantly, which could cause falling off of young fruits. As a result, metamitron has a good fruit thinning effect on apples, related to the decreased soluble protein content, an insufficient supply of soluble carbohydrate, increased ABA content, and decreased (Z+GA3+IAA)/ABA ratio.
Keywords:hormone   nutrition   metamitron   fruit setting   apple
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号