Atmospheric mercury in northern Wisconsin: Sources and species |
| |
Authors: | Carl H. Lamborg William F. Fitzgerald Grace M. Vandal Kristofer R. Rolfhus |
| |
Affiliation: | 1. Dept. of Marine Science, The University of Connecticut, Avery Point, 06340, Groton, CT
|
| |
Abstract: | The atmospheric chemistry, deposition and transport of mercury (Hg) in the Upper Great Lakes region is being investigated at a near-remote sampling location in northern Wisconsin. Intensive sampling over two years and various seasons has been completed. A multi-phase collection strategy (gas-, particle- and precipitation-phases) was employed to gain insight into the processes controlling concentrations and chemical/physical speciation of atmospheric Hg. Additional chemical and physical atmospheric determinations (e.g. ozone, particulate constituents, meteorology) were also made during these periods to aid in the interpretation of the Hg determinations. For example, correlations of Hg with ozone, sulfur dioxide and synopticscale meteorological features suggest a regionally discernible signal in Hg. Comparison to isosigma backward air parcel trajectories confirms this regionality and implicates the areas south, southeast and northwest of the site to be sources for Hg. Particle-phase Hg (Hgp) was found to be approximately 40% in an oxidized form, or operationally defined as “reactive”. However, this was quite variable from year-to-year. Hgp and other particle constituents (esp. sulfate) show significant correlation and similarity in behavior (concentration ratios in precipitation and in particles). These observations are part of the growing evidence to support the hypothesis that precipitation-phase Hg arises in large part from the scavenging of atmospheric particulates bearing Hg. Observed concentrations of rain and particle-Hg fit broadly the theoretical expectations for nucleation and below-cloud scavenging. Significant increases in the Hg/aerosol mass ratio appear to take place during transport. Enrichment of aerosols is taken as evidence of gas/particle conversion which could represent the step linking gas-phase Hg with rain. The refined budget indicates ca. 24% of total deposition is from summer particle dry deposition, and that this deposition also contributes ca. 24% of all reactive Hg deposition. Additionally, almost all (86%) deposition (wet and dry) occurs during the summer months. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|