首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changes in wheat seed storage protein fingerprint due to soil mineral content
Authors:David J Bonfil  Henryk Czosnek  Uzi Kafkafi
Institution:(1) Department of Field Crops, Vegetables and Genetics, The Hebrew University of Jerusalem, POB 12, 76100 Rehovot, Israel;(2) Present address: Gilat Experiment Station, Department of Field Crops, Agricultural Research Organization, M.P. Negev 2, 85280, Israel
Abstract:Wheat seed storage protein fingerprint is used to determine the gluten protein pattern in studies aimed at improving flour quality. Wild wheat with high seed protein content is used extensively in wheat breeding programs. Although the wild wheat growth and protein content may be influenced by environmental conditions, the gluten-protein pattern is generally considered as indicative of a genotype, without the superimposition of environmental influences. The effects of soil type, habitat, and deficiencies of N, P, K and S on seed storage protein composition were examined in nine accessions of wild wheat (Triticum turgidum var. dicoccoides) and three varieties (two T. aestivum and one T. durum). Soil from ten natural habitats of the wild wheat that had not previously received any fertilizers or manures was sampled and used to grow wheat in a greenhouse. Seed storage protein composition was characterized by SDS-PAGE. Although deficiencies in soil nutrient caused variations in the seed storage proteins, the genotype was the main factor determining the seed storage protein composition. Seed storage protein composition of genotypes varied when grown under different mineral nutrient conditions. Only one genotype was stable showing almost identical protein patterns under all growing conditions studied without any qualitative change in fingerprint pattern. In the other genotypes, as well as the cultivars, the seed storage protein was affected at least to some extent by the soil. The ‘soil effect’ is summarized in terms of three main quantitative changes in the seeds: 1 – the relative amounts of the high-molecular-weight proteins; 2 – the relative amounts of proteins in the range of 45 and 65 kD; 3 – the percentage distribution of the HMW glutenin and other groups of seed storage proteins. The soild induced also qualitative differences in the composition of seed storage proteins, mostly in those of 45–65 kD. These differences were observed whenever a deficiency of S, N, P, K or Mg was identified. Therefore, in breeding programs that use seed storage protein fingerprints of wild wheat germplasms should be exercise caution when the germplasms selected from wild habitats. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:gene expression  gluten  glutenin  protein fingerprint  Triticum turgidum  var  dicoccoides  wheat  Triticum aestivum  Triticum durum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号