首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field
Institution:1. Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain;2. Departamento de Agronomía, Universidad de Córdoba, Campus Universitario de Rabanales, 14014 Córdoba, Spain
Abstract:Maize was grown in the high-radiation arid summer environment of Davis, California, and its leaf photosynthetic rate was measured over diurnal courses on cloudless days with the leaf held perpendicular to the sunlight. On days of high atmospheric vapor pressure deficit (VPD), leaf photosynthesis reached a maximum in the late morning and then decreased gradually as the day progressed, though the soil was well irrigated. When CO2 concentration in the measurement chamber was raised to about 1000 μmol mol−1, photosynthesis was enhanced, but more in the afternoon than in the morning. As a result, rates measured at high CO2 in the morning and afternoon were essentially the same. There was also no difference in the curves of photosynthetic rate (A) versus intercellular CO2 concentration (Ci) for the morning and afternoon. Hence, photosynthetic capacity was similar for the two periods and there was no evidence of photoinhibition by the high photosynthetic photon flux density at noon. Further, Ci and photosynthetic rates A measured over a range of photon flux density were lower in the afternoon than in the morning. These results indicate that A at noon and early afternoon was more limited than in the morning by epidermal conductance (mostly stomatal). On a day of low VPD, however, midday depression in A and epidermal conductance were not evident for the well-irrigated plants. Without irrigation and with leaves at a lower midday water potential, midday reduction in conductance and A was much more marked, beginning late in the morning. Epidermal conductance of maize grown in the field in Davis is are not sensitive to VPD. Therefore, the midday reduction in conductance and A was more likely the result of low leaf water potential caused by high transpiration rates.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号