首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Response of conservation tillage sorghum to growing season precipitation
Authors:Paul W Unger  Jean L Steiner and Ordie R Jones
Institution:

U.S. Department of Agriculture, Agricultural Research Service, Conservation and Production Research Laboratory, Bushland, Texas 79012, U.S.A.

Abstract:In earlier crop rotation studies in which grain sorghum (Sorghum bicolor (L.) Moench) followed winter wheat (Triticum aestivum L.) after a 10- to 11-month fallow period during which the wheat residues were managed by different tillage methods, sorghum yields increased in response to increases in soil water content at sorghum planting time. Similar results were obtained when residues were placed on the surface at the start of the fallow period. The soil water contents at planting time were positively correlated with amounts of wheat residue maintained on the soil surface during fallow.

The studies also suggested that sorghum responded positively to growing season precipitation when increasing of residue remained on the soil during the growing season. The objective of this study was to evaluate this response to growing season precipitation through statistical analyses of data from five earlier tillage and residue placement studies. Regression analyses of data from the studies showed that sorghum grain yields increased with increasing amounts of surface residues at planting time. Differences in response of grain yield to precipitation were greatest in the vegetative period. For the period, grain yields increased 0.014 Mg ha?1 per mm of precipitation when residue amounts ranged from 0 to 0.4 Mg ha?1 per mm of precipitation when residue amounts ranged from 0 to 0.4 Mg ha?1, and 0.027 Mg ha?1 per mm of precipitation when residue amounts were much greater-than 3.2 Mg ha?1.

Differences in response to rainfall in the heading and grain filling period were lower or negligible. High responses for the vegetative period were attributed to the residues which increased infiltration and reduced evaporation before canopy development. Lower responses during heading and lack of responses during grain filling were attributed to: (1) canopy development, which minimized the effect of residues on imfiltration and evaporation; (2) soil cracking, which resulted in similar infiltration with all treatments; and (3) residue decomposition, which minimized differences among residue amounts on the soil with different treatments.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号