首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evidence of altitudinal increase in photosynthetic capacity: gas exchange measurements at ambient and constant CO2 partial pressures
Authors:Caroline C Bresson  Andrew S Kowalski  Antoine Kremer  Sylvain Delzon
Institution:1. UMR BIOGECO, Université Bordeaux 1 - INRA, 33405, Talence, France
2. Departamento de Física Aplicada, Universidad de Granada, 18071, Granada, Spain
3. Centro Andaluz del Medio Ambiente (CEAMA), 18006, Granada, Spain
Abstract:
  • ? Because all microclimatic variables change with elevation, it is difficult to compare plant performance and especially photosynthetic capacity at different elevations. Indeed, most previous studies investigated photosynthetic capacity of low- and high-elevation plants using constant temperature, humidity and light but varying CO2 partial pressures (P CO 2).
  • ? Using gas exchange measurements, we compared here maximum assimilation rates (A max) at ambient and constant-low-elevation P CO 2for two temperate tree species along an altitudinal gradient (100 to 1600 m) in the Pyrénées mountains.
  • ? Significant differences in A max were observed between the CO2 partial pressure treatments for elevations above 600 m, the between-treatment differences increasing with elevation up to 4 μmol m?2 s?1. We found an increase in A max with increasing elevation at constant-low-elevation P CO 2 but not at ambient P CO 2 for both species. Given a 10% change in P CO 2, a proportionally higher shift in maximum assimilation rate was found for both species.
  • ? Our results showed that high elevation populations had higher photosynthetic capacity and therefore demonstrated that trees coped with extreme environmental conditions by a combination of adaptation (genetic evolution) and of acclimation. Our study also highlighted the importance of using constant CO2 partial pressure to assess plant adaptation at different elevations.
  • Keywords:
    本文献已被 SpringerLink 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号