首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comprehensive assessment of growth traits and wood properties in half-sib <Emphasis Type="Italic">Pinus koraiensis</Emphasis> families
Authors:Fang Wang  Qinhui Zhang  Yonggang Tian  Shucheng Yang  Hongwu Wang  Liankui Wang  Yanlong Li  Peng Zhang  Xiyang Zhao
Institution:1.State Key Laboratory of Tree Genetics and Breeding,Northeast Forestry University,Harbin,China;2.Sanchazi Forestry Bureau of Jilin Province,Baishan,China
Abstract:Rapid growth and high quality have always been important goals pursued for timber forests. Therefore, growth traits and wood properties are the basis of superior materials to select and breed new cultivars. In this study, 42 half-sib families of 31-year-old P. koraiensis trees were used as materials. Nine growth traits (tree height, diameter at breast height, volume, basal diameter, average annual growth of the tree height, under branch height, stem straightness degree, form quotient, and branching angle) and eight wood properties (cellulose contents, hemicellulose contents, holocellulose contents, lignin contents, ash contents, wood density, fiber length and fiber width) were measured and analyzed. The results of an analysis of variance showed that there were extremely significant differences among the families in their growth and wood properties with the exception of the form quotient and wood density; that there were significant differences among block by family for growth traits except for the tree height, basal diameter, under branch height and branching angle; and that there was no significant difference for each growth trait among the blocks. The phenotypic coefficient of variation and heritability of the growth traits ranged from 7.17 to 42.35% and from 0.13 to 0.62, respectively. The phenotypic coefficient of variation and heritability of the wood properties ranged from 10.21 to 50.26% and from 0.67 to 0.92, respectively. There were extremely significantly positive correlations between the tree height, basal diameter, diameter at breast height, volume, under branch height, average annual growth of tree height and form quotient. However, there was no significant correlation between growth traits and wood properties. The result of the principal component analysis indicated that the tree height, diameter at breast height, volume, basal diameter, and cellulose contents, holocellulose contents, and lignin contents could be selected as comprehensive evaluation indices of growth and wood properties, respectively. According to a comprehensive evaluation, when the selection rate was 10%, four families (PK 40, PK 80, PK 42, and PK 71) were selected as elite families based on growth performance; another four families (PK 70, PK 62, PK 52, and PK 44) were selected as elite families based on their wood quality; and finally, four elite families (PK 70, PK 62, PK 61, and PK 40) were selected due to a combination of growth traits and wood properties. This study will provide a theoretical basis for the genetic improvement of fast-growing and high-quality P. koraiensis families.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号