首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络方法在车内噪声信号预测中的应用
引用本文:常振臣,王登峰,周淑辉,卢延辉. 神经网络方法在车内噪声信号预测中的应用[J]. 农业机械学报, 2003, 34(1): 21-24
作者姓名:常振臣  王登峰  周淑辉  卢延辉
作者单位:吉林大学汽车学院
基金项目:高等学校博士学科点专项科研基金资助项目 (项目编号 :19990 185 0 3 )
摘    要:针对以往车内噪声有源控制过程中存在的次级声源在初级声场采样传声器上的声反馈问题,提出了车内噪声信号识别和预测的神经网络方法。对被试面包车在稳态和非稳态两种工况下的试验研究表明,利用车身悬置点和发动机的振动信号,通过BP神经网络来识别和预测车内驾驶员耳旁噪声是可行的,可以解决次级声源在初级声场采样传声器上的声反馈问题。

关 键 词:神经网络方法 车内噪声信号 预测 识别 声反馈
修稿时间:2002-03-02

Application of NN Method to Signal Forecast of Vehicle Interior Noise
Chang Zhenchen Wang Dengfeng Zhou Shuhui Lu Yanhui. Application of NN Method to Signal Forecast of Vehicle Interior Noise[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(1): 21-24
Authors:Chang Zhenchen Wang Dengfeng Zhou Shuhui Lu Yanhui
Affiliation:Jilin University
Abstract:A common problem on the active noise control in vehicle is the sound feedback from the secondary sound source to sampling microphone of the primary sound field. In order to solve this problem, a neural network(NN) method used for identifying and forecasting the noise signal in vehicle is proposed. A comparison between predicted and measured results in the minibus under the stable and unstable state indicates that it is feasible to identify and forecast the noises at the driver's ear position by the BP NN according to the signals of the suspension vibrations and the engine vibrations. Sound feedback problem of secondary sound source on sampling microphone of primary sound field can be solved by this method.
Keywords:Vehicle engineering   Vehicle interior noise   Neural network   Forecast  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号