首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trap mesh selectivity and the management of reef fishes
Authors:Robin Mahon  & Wayne Hunte
Institution:Fisheries and Environmental Consulting, 48 Sunset Crest, St. James, Barbados;;School for Graduate Studies and Research, University of the West Indies, Cave Hill, Barbados
Abstract:The regulation of mesh size has frequently been proposed as a management measure for fish traps, the predominant gear used by the reef fish fisheries in the Caribbean. Studies on trap mesh selectivity show that mesh size is a determinant of catch rates and the size at which fish recruit to fish traps. Mesh size also affects the species composition in fish traps, probably through size selectivity. Other factors also affect catch rates, and the fish size and species composition in traps, for example, soak time, trap design, trap size, species body shape. Given the variety of growth rates and maturity schedules of reef fish commonly taken in fish traps in the Caribbean, no single mesh size will optimise the yield or protect against recruitment overfishing for the entire range of exploited species. Preliminary data suggest that the fishing power of traps may decrease with increased mesh size. This would reduce the effective fishing effort and thus mortality on fully recruited size classes. Studies indicate that the mesh sizes currently in use in most Caribbean countries are too small, and that a minimum mesh size of at least 3.8–5.1 cm would be required to optimise yields for local consumption. Comparative fishing experiments indicate that an increase in mesh size in areas of high fishing mortality typically results in a reduction in catch per trap. Thus increasing trap mesh size can be expected to result in short‐term loss in revenue for fishers. However, no studies have examined the times that would be required for catches to return to the levels prevailing before the increase of mesh size, and thereafter, for fishers to recover the losses incurred during the transition period. To provide managers with an estimate of the impacts that mesh‐size regulation could have on fishers, the recovery time of catches and the financial recovery times for fishers should be modelled for a hypothetical assemblage of 10–15 reef fishes using available information. These studies would enable managers to plan for the implementation of mesh‐size increases and to communicate the potential benefits to fishers in quantitative terms.
Keywords:mesh size  reef fishes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号