首页 | 本学科首页   官方微博 | 高级检索  
     


Biocycle of nitrogen in a Cyclobalanopsis glauca-dominated evergreen broad-leaved forest in East China
Authors:Mingjian Yu  Xuehong Xu  Minghong Li  Hailong Fu
Affiliation:(1) College of Life Sciences, Zhejiang University, Hangzhou, 310012, China;(2) College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
Abstract:The nitrogen (N) cycling was elucidated in a 40-year-old subtropical evergreen broad-leaved forest dominated by Cyclobalanopsis glauca growing on red soil in Zhejiang Province, East China. The concentrations of N in the representative species ranged from 0.49% to 1.64%, the order of which in various layers was liana and herb layers > understory layer > tree and subtree layers; in various organs was leaf > branch > root > trunk; and aboveground parts > underground parts. The sequence of the concentrations of N in C. glauca was understory > tree > subtree layer; young and high-growing > old organs; reproductive > vegetative organs. Seasonal dynamics of the concentrations of N in C. glauca in the tree and subtree layers was comparatively stable. It was lower in autumn (October) in root, branch, and leaf in the tree layer, and low in January in the understory. There was no evident change in regularity of the concentrations of N in varying diameter classes. The concentrations of N in the litterfall, precipitation, throughfall, litter layer, and soil were 0.74%–2.30%, 0.000,038%, 0.000,09%, 1.94%, and 0.59%, respectively. The standing crop of N in the plant community was 1,025.28 kg/hm2, accumulation in the litter layer was 224.88 kg/hm2, and reserve in the soil was 55,151 kg/hm2. Annual retention of N was 119.47 kg/hm2, return was about 84.13 kg/hm2, among which litterfall was 78.49 kg/hm2 and throughfall, 5.64 kg/hm2. Annual absorption of N was 203.60 kg/hm2. Annual input of N through incident precipitation was 4.88 kg/hm2. Compared with other forest types, cycling rate of N in the community was lower than in deciduous broad-leaved forests, rain forests, and mangroves, and was moderate in evergreen broad-leaved forests. N use efficiency of this forest was moderate among the forest types cited. According to the characteristics of the biocycle of phosphorous, it was concluded that N availability in the soil of this forest was not lower, and phosphorous not N was the limiting factor in the growth of plants in this community. __________ Translated from Acta Ecologica Sinica, 2005, 25(4): 740–748 [译自: 生态学报, 2005, 25(4): 740–748]
Keywords:cycling rate  Cyclobalanopsis glauca  evergreen broad-leaved forest  nitrogen cycling  use efficiency
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号