Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus |
| |
Authors: | Tryggve Persson Helens Lundkvist Anders Wirén Riitta Hyvönen Bengt Wessén |
| |
Affiliation: | 1. Dept of Ecology and Environmental Research, Swedish University of Agricultural Sciences, Box 7072, S-750 07, Uppsala, Sweden
|
| |
Abstract: | The aim was to determine if changes in C and N mineralization after acidification and liming could be explained by changes in the soil organism biomass. Intact soil cores from F/H layers in a Norway spruce (C:N=31) and a Scots pine (C:N=44) stand in central Sweden were treated in the laboratory for 55 days with deionized water (control), weak H2SO4 (successively applied as 72 mm of acid rain of pH 3.1), strong H2SO4 (applied as a single high dose of pH 1), and lime CaCO3. Strong acidification reduced C mineralization and increased net N mineralization in both soils. Weak acidification resulted in similar but less pronounced effects. Liming initially stimulated C mineralization rate, but the rates declined, indicating that an easily available C source was successively used up by the microorganisms. Liming also increased net N mineralization in the C:N=31 humus, but not significantly in the C:N--44 humus. Strong acidification generally affected the amounts of FDA-active fungal hyphae, nematodes and enchytraeids more than the other treatments did. The increases in net N mineralization after acidification and liming could only partly be explained by the decreases in biomass N in soil organisms. Mineralization of biomass N from killed soil organisms could at the most explain up to about 30% of the increase in net N mineralization after strong acidification. Most of the effects on N mineralization seemed to depend on the fact that acidification reduced and liming increased the availability of C and N to the microorganisms. Furthermore, acidification seemed to reduce the incorporation of N from dead organisms into the soil organic matter and, thereby, make the N compounds more readily available to microbial decomposition and mineralization. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|