首页 | 本学科首页   官方微博 | 高级检索  
     

湖库富营养化人工神经网络评价模型
引用本文:楼文高. 湖库富营养化人工神经网络评价模型[J]. 水产学报, 2001, 25(5): 474-478
作者姓名:楼文高
作者单位:上海水产大学水环境科学研究中心,
基金项目:上海水产大学校长专项基金项目(SFU200105)
摘    要:在分析现有应用人工神经网络评价模型局限性的基础上,根据湖库富营养化的评价标准,提出了生成BP神经网络训练样本、检验样本和测试样本的新方法,给出了区分湖库富营养化不同程度的分界值,论述了确定合理隐层及其节点数的方法,使得训练后的神经网络模型具有更强的泛化能力,不受初始连接权值的影响。训练后的评价模型应用于实例的评价结果表明,新的评价模型具有更好的客观性、强壮性、通用性和实用性。并且由于评价结果采用连续函数输出,能够比较精细地分析湖库的富营养化程度。

关 键 词:富营养化评价 神经网络 训练样本 检验样本 湖泊 水库
文章编号:1000-0615(2001)05-0474-05
收稿时间:2014-04-14
修稿时间:2001-07-05

Eutrophication assessment model using artificial neural networks for lakes and reservoirs
LOU Wen-gao. Eutrophication assessment model using artificial neural networks for lakes and reservoirs[J]. Journal of Fisheries of China, 2001, 25(5): 474-478
Authors:LOU Wen-gao
Affiliation:Water Environmental Research Center, Shanghai Fisheries University, Shanghai 200090, China
Abstract:Some faults such as too little training set data, lack of testing (verification) set data, too large network topology and lack of boundary values were found in models, using artificial neural networks (ANN), presented before. A new approach, generating training set data, verification set data and testing set data and boundary set data, was put forward in this paper. Furthermore, the principle of determining the number of hidden layers and their neurons was also discussed. And, the trained NN-based model presented in this paper possessed the capacity of higher generalization and was not affected by the initial values of connection weighs. The assessed results of cases showed that the new established NN-based model was more objective, robust, reliable, practicable, and fault-tolerant compared with other methods such as gray-clustering and gray situation decison-making method etc. It is possible to make analysis and forecast of the eutrophication trend of lake and reservoir using the new model.
Keywords:lake and reservoir  eutrophication assessment  neural networks  training set data  verification set data
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《水产学报》浏览原始摘要信息
点击此处可从《水产学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号