首页 | 本学科首页   官方微博 | 高级检索  
     

秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响
引用本文:吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(2): 259-268. DOI: 10.3724/SP.J.1006.2020.92013
作者姓名:吴玉红  郝兴顺  田霄鸿  陈浩  张春辉  崔月贞  秦宇航
作者单位:1. 汉中市农业科学研究所;2. 西北农林科技大学资源环境学院
基金项目:This study was supported by the Innovation Project of Science and Technology of Shaanxi Province(2015KTCL02-21);the Agricultural Science and Technology Innovation and Transformation Project of Shaanxi Province(NYKJ-2018-HZ01)
摘    要:为汉中盆地秸秆还田技术和合理化肥减量技术提供科学依据,2015—2017年小麦和水稻生长季,设置秸秆不还田+常规施肥(SN+NPK);秸秆常规还田+常规施肥(S+NPK);秸秆促腐还田+常规施肥(SD+NPK);秸秆促腐还田+化肥减量15%(SD+85%NPK);秸秆促腐还田+化肥减量30%(SD+70%NPK),共5个处理,研究其对土壤总有机碳(TOC)、活性有机碳(LOC)、碳储量(SCS)、作物产量及经济效益的影响。结果表明与秸秆不还田配施常规施肥处理(SN+NPK)相比,秸秆还田配施不同比例化肥处理显著提高了稻田0~15cm土层的TOC和LOC,增幅分别为3.62%~25.07%和23.01%~46.79%; S+NPK和SD+NPK处理提高了0~30 cm碳储量,增幅分别为4.67%和18.20%。而SD+85%NPK和SD+70%NPK分别降低8.31%和9.83%。S+NPK和SD+NPK处理显著增加了小麦和水稻籽粒产量,而SD+85%NPK和SD+70%NPK处理均降低了小麦和水稻产量,周年产量2年平均增幅分别为3.47%、8.70%、-3.65%、-8.12%。与SN...

关 键 词:稻麦轮作  秸秆还田  化肥减量  土壤有机碳  周年生产力
收稿时间:2019-03-19

Effect of straw returning combined with NPK fertilization on soil carbon sequestration and economic benefits under rice-wheat rotation in Hanzhong basin
WU Yu-Hong,HAO Xing-Shun,TIAN Xiao-Hong,CHEN Hao,ZHANG Chun-Hui,CUI Yue-Zhen,QIN Yu-Hang. Effect of straw returning combined with NPK fertilization on soil carbon sequestration and economic benefits under rice-wheat rotation in Hanzhong basin[J]. Acta Agronomica Sinica, 2020, 46(2): 259-268. DOI: 10.3724/SP.J.1006.2020.92013
Authors:WU Yu-Hong  HAO Xing-Shun  TIAN Xiao-Hong  CHEN Hao  ZHANG Chun-Hui  CUI Yue-Zhen  QIN Yu-Hang
Affiliation:1.Hanzhong Agricultural Research Institute, Hanzhong 723000, Shaanxi, China;2.College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
Abstract:A two-year field experiment was conducted to investigate the response of soil carbon sequestration, crop yield and economic benefit to rates of NPK application and straw returning under rice-wheat rotation from 2015 to 2017. The experiment included five treatments: application of NPK without straw returning (SN+NPK), application of NPK with straw returning (S+NPK), application of NPK with decayed straw returning (SD+NPK), application of NPK with 15% reduction plus decayed straw returning (SD+85%NPK) and application of NPK with 15% reduction plus decayed straw returning (SD+70%NPK). Compared with SN+NPK, total organic carbon (TOC) and active organic carbon (LOC) in 0-15 cm depth increased by 3.62%-25.07% and 23.01%-46.79% in the treatments of straw returning plus different returned NPK application, respectively. Both S+NPK and SD+NPK treatments increased organic carbon storage (SCS) in 0-30 cm soil layer by 4.67% and 18.20%, but SD+85%NPK and SD+70%NPK decreased the SCS by 8.31% and 9.83%, respectively. Compared with SN+NPK, both S+NPK and SD+NPK increased grain yields for wheat and rice. However, SD+85%NPK and SD+70%NPK treatments significantly reduced grain yields for wheat and rice. Compared with SN+NPK treatment, the increase in annual average yield was 3.47% for S+NPK, 8.70% for SD+NPK, -3.65% for SD+85%NPK, and -8.12% for SD+70%NPK, while the increase of annual net profit in two years was 16.91%, 23.56%, 6.02%, and 1.06%, respectively. Soil organic carbon, crop yield and efficiency were the highest in the SD+NPK treatment, but lowest in SD+70%NPK. Compared with SD+70%NPK treatment, SD+85%NPK did not affect the annual average yield, but slightly increased the annual net profit due to a cost reduction caused by less fertilizer application with a total reduction of 80 kg ha -1. In conclusion, the combination of straw returning with NPK fertilization is an effective farming practice to improve soil carbon sequestration, crop yield and economic benefits in Hanzhong basin. Considering the environment and economic effects, decayed straw returning with 15% reduction in NPK application is more suitable to achieve the fertilizer reduction and green production.
Keywords:rice-wheat rotation  straw return  fertilizer reduction  soil organic carbon  annual productivity  
本文献已被 CNKI 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号