首页 | 本学科首页   官方微博 | 高级检索  
     

小麦品种扬麦16赤霉病抗扩展QTL定位及分析
引用本文:胡文静,张勇,陆成彬,王凤菊,刘金栋,蒋正宁,王金平,朱展望,徐小婷,郝元峰,何中虎,高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析[J]. 作物学报, 2020, 46(2): 157-165. DOI: 10.3724/SP.J.1006.2020.91048
作者姓名:胡文静  张勇  陆成彬  王凤菊  刘金栋  蒋正宁  王金平  朱展望  徐小婷  郝元峰  何中虎  高德荣
作者单位:江苏里下河地区农业科学研究所/农业农村部长江中下游小麦生物学与遗传育种重点实验室;国家小麦改良中心/中国农业科学院作物科学研究所;国际玉米小麦改良中心(CIMMYT)中国办事处
基金项目:This study was supported by the National Natural Science Foundation of China(31901544);China Agriculture Research System(CARS-03-03B);China Agriculture Research System(CARS-3-2-11);the National Key Research and Development Program of China(2017YFD0100801);the National Key Research and Development Program of China(2017YFD0101802);the Natural Science Foundation of Jiangsu Province(BK20171279)
摘    要:扬麦系列品种赤霉病抗性在世界范围内得到重视,但其抗性遗传机制尚不清楚。扬麦16是近年来大面积推广的抗赤霉病品种,本研究以扬麦16与中麦895杂交构建的174个双单倍体(doublehaploidlines,DH)系为材料,于2017—2019年连续3年对该群体采用单花滴注进行赤霉病抗扩展鉴定。利用660KSNP芯片构建高密度遗传图谱,共检测到6个抗性QTL,分别位于2DL、3BL、4BS、4DS、5BL和6AS染色体上。除4BS位点外,其他5个抗性等位基因均来源于扬麦16。QFhb.yaas-4DS和QFhb.yaas-6AS均在多年被检测到,可解释8.8%~15.0%的表型变异;QFhb.yaas-2DL、QFhb.yaas-3BL仅在1年被检测到,分别解释10.5%和14.7%的表型变异;QFhb.yaas-5BL和来源于中麦895的QFhb.yaas-4BS仅在1年被检测到且效应仅为6.4%和8.3%。QTL效应分析结果表明,相较于单个位点,多个抗性QTL的聚合可显著降低赤霉病严重度。扬麦16抗赤霉病QTL将为揭示扬麦品种抗性遗传机制及开发相应分子标记奠定基础。

关 键 词:小麦  赤霉病  QTL  标记辅助育种
收稿时间:2019-07-22

Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16
HU Wen-Jing,ZHANG Yong,LU Cheng-Bin,WANG Feng-Ju,LIU Jin-Dong,JIANG Zheng-Ning,WANG Jin-Ping,ZHU Zhan-Wang,XU Xiao-Ting,HAO Yuan-Feng,HE Zhong-Hu,GAO De-Rong. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16[J]. Acta Agronomica Sinica, 2020, 46(2): 157-165. DOI: 10.3724/SP.J.1006.2020.91048
Authors:HU Wen-Jing  ZHANG Yong  LU Cheng-Bin  WANG Feng-Ju  LIU Jin-Dong  JIANG Zheng-Ning  WANG Jin-Ping  ZHU Zhan-Wang  XU Xiao-Ting  HAO Yuan-Feng  HE Zhong-Hu  GAO De-Rong
Affiliation:1.Lixiahe Institute of Agriculture Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China;2.National Wheat Improvement Center / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;3.CIMMYT-China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract:Fusarium head blight (FHB) resistance of Yangmai wheat cultivars has been paid much attention, but the underlying genetic mechanism is unclear. In recent years, Yangmai 16 is a predominant wheat cultivar durably resistant to FHB in production. A population of 174 double haploid lines (DH) produced by crossing Yangmai 16 (YM16) with the susceptible cultivar Zhongmai 895 (ZM895) was evaluated for FHB response using point inoculation from 2017 to 2019. The DH population was genotyped with wheat 660K SNP array and a high-density genetic map was constructed. Six resistance QTLs were detected, and among them, five were from the resistant parent Yangmai 16 and one from Zhongmai 895. QFhb.yaas-4DS and QFhb.yaas-6AS were detected at least in two years, explaining 8.8% to 15.0% of the phenotypic variances, respectively. QFhb.yaas-2DL and QFhb.yaas-3BL were detected only in one year, accounting for 10.5% and 14.7% of the phenotypic variances. QFhb.yaas-5BL and QFhb.yaas-4BS were detected in one year, too, accounting for 6.4% and 8.3% of the phenotypic variances, respectively. Pyramiding of multiple resistant loci with large effects (>10%) is an effective approach to increase FHB resistance. The QTLs identified from Yangmai 16 in the present study will provide a starting point for genetic studies of other Yangmai cultivars, and the QTLs closely linked to markers will be useful for marker-assisted selection in wheat FHB improvement.
Keywords:Triticum aestivum   Fusarium head blight  QTL  marker-assisted breeding  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号