首页 | 本学科首页   官方微博 | 高级检索  
     


SIRT1 promotes autophagy of pancreatic cancer cells induced by hypoxia via regulating FOXO1/RAB7 signaling pathway
Authors:TIAN She  JIANG Jian-xin  YU Chao  LI Lin  SUN Cheng-yi
Affiliation:1. Guizhou Medical University, Guiyang 550001, China;2. Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guizhou Medical University, Guiyang 550001, China;3. Renmin Hospital of Wuhan University, Hubei General Hospital, Wuhan 430000, China
Abstract:AIM: To investigate the effect of SIRT1 on the autophagy of pancreatic cancer cells under hypoxia condition, and to analyze the underlying mechanism of regulating FOXO1/RAB7 signaling pathway. METHODS: Western blot and immunofluorescence methods were used to determine the expression of SIRT1 in the pancreatic cancer cells. The small interfering RNA targeting SIRT1 and SIRT1 over-expression plasmid were transfected into the pancreatic cancer Panc-1 cells. Confocal microscopy was used to detect the LC3 expression. Western blot was used to analyze the protein levels of LC3, p62 and FOXO1/RAB7 signaling pathway-related molecules. Co-immunoprecipitation was used to detected the protein interaction between SIRT1 and FOXO1. RESULTS: The expression level of SIRT1 in the nucleus of Panc-1 cells was increased under hypoxia condition. Compared with negative control under hypoxia condition, knock-down of SIRT1 expression attenuated the autophagy flux in the pancreatic cancer Panc-1 cells (P<0.05). Over-expression of SIRT1 increased the protein levels of FOXO1 and RAB7. On the contrary, knock-down of SIRT1 expression inhibited the protein levels of FOXO1 and RAB7. The protein interaction between SIRT1 and FOXO1 in the pancreatic cancer cells was observed. CONCLUSION: SIRT1 in pancreatic cancer Panc-1 cells under hypoxia condition is over-expressed in the nucleus. Down-regulation of SIRT1 inhibits autophagy and its mechanism may be related to FOXO1/RAB7 signaling pathway.
Keywords:Pancreatic cancer  SIRT1 protein  Autophagy  FOXO1/RAB7 signaling pathway  
点击此处可从《园艺学报》浏览原始摘要信息
点击此处可从《园艺学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号