首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genetic studies on glutathione-dependent reactions in resistant strains of the house fly,Musca domestica L
Authors:N Motoyama  WC Dauterman  FW Plapp
Institution:Toxicology Program, Department of Entomology, North Carolina State University, Raleigh, North Carolina 27607 USA;Department of Entomology, Texas A&M University, College Station, Texas 77843 USA
Abstract:Genetic studies of glutathione-dependent reactions were conducted with a diazinon-resistant house fly strain in which resistance is controlled primarily by genes on chromsome II. The resistant strain was crossed with a susceptible strain which had mutant markers on chromosomes II, III, and V, and the F1 was backcrossed to the susceptible strain. Glutathione transferase activities of the resultant eight phenotypes were measured using 3,4-dichloronitrobenzene, methyl iodide, and γ-benzene hexachloride as substrates. High levels of all these activities are controlled by gene(s) on chromosome II. Further analysis was made by introducing diazinon resistance into a susceptible strain via genetic crossing-over. Intermediate activity levels for 3,4-dichloronitrobenzene and methyl iodide conjugations were introduced along with intermediate levels of resistance. Assays of individual flies of the synthesized strain revealed they were heterogeneous for glutathione-dependent activities, consisting of individuals with low, intermediate, and high transferase activity. Based on these results, high levels of the glutathione-dependent enzymes are not a major biochemical mechanism responsible for diazinon resistance. It was also demonstrated that glutathione S-aryltransferase and S-alkyltransferase in the house fly, as measured with 3,4-dichloronitrobenzene and methyl iodide, are inseparable genetically and may, therefore, be the same enzyme.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号