首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genome‐wide association study for egg production and quality in layer chickens
Authors:A Wolc  J Arango  T Jankowski  I Dunn  P Settar  JE Fulton  NP O'Sullivan  R Preisinger  RL Fernando  DJ Garrick  JCM Dekkers
Institution:1. Department of Animal Science, Iowa State University, , Ames, IA, USA;2. Hy‐Line International, , Dallas Center, IA, USA;3. Nutribiogen, , Poznan, Poland;4. The Roslin Institute and R(D)SVS, The University of Edinburgh, , Edinburgh, UK;5. Lohmann Tierzucht GmbH, , Cuxhaven, Germany
Abstract:Discovery of genes with large effects on economically important traits has for many years been of interest to breeders. The development of SNP panels which cover the whole genome with high density and, more importantly, that can be genotyped on large numbers of individuals at relatively low cost, has opened new opportunities for genome‐wide association studies (GWAS). The objective of this study was to find genomic regions associated with egg production and quality traits in layers using analysis methods developed for the purpose of whole genome prediction. Genotypes on over 4500 birds and phenotypes on over 13 000 hens from eight generations of a brown egg layer line were used. Birds were genotyped with a custom 42K Illumina SNP chip. Recorded traits included two egg production and 11 egg quality traits (puncture score, albumen height, yolk weight and shell colour) at early and late stages of production, as well as body weight and age at first egg. Egg weight was previously analysed by Wolc et al. ( 2012 ). The Bayesian whole genome prediction model – BayesB (Meuwissen et al. 2001 ) was used to locate 1 Mb regions that were most strongly associated with each trait. The posterior probability of a 1 Mb window contributing to genetic variation was used as the criterion for suggesting the presence of a quantitative trait locus (QTL) in that window. Depending upon the trait, from 1 to 7 significant (posterior probability >0.9) 1 Mb regions were found. The largest QTL, a region explaining 32% of genetic variance, was found on chr4 at 78 Mb for body weight but had pleiotropic effects on other traits. For the other traits, the largest effects were much smaller, explaining <7% of genetic variance, with regions on chromosomes 2, 12 and 17 explaining above 5% of genetic variance for albumen height, shell colour and egg production, respectively. In total, 45 of 1043 1 Mb windows were estimated to have a non‐zero effect with posterior probability > 0.9 for one or more traits.
Keywords:Egg production  egg quality     GWAS     laying hens
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号