首页 | 本学科首页   官方微博 | 高级检索  
     

电动多旋翼植保无人机升力特性综合测评方法
引用本文:臧英,何新刚,周志艳,明锐,臧禹,罗锡文,兰玉彬. 电动多旋翼植保无人机升力特性综合测评方法[J]. 农业工程学报, 2018, 34(14): 69-77
作者姓名:臧英  何新刚  周志艳  明锐  臧禹  罗锡文  兰玉彬
作者单位:华南农业大学工程学院/广东省农业航空应用工程技术研究中心;国家精准农业航空施药技术国际联合研究中心;华南农业大学南方农业机械与装备关键技术教育部重点实验室
基金项目:广东省科技计划项目(2014A020208103, 2015B020206003,2014B090904073,2017B090907031);广东省现代农业产业技术体系创新团队项目(2017LM2153)
摘    要:升力特性是电动多旋翼植保无人机性能测试的重要参数之一。为了实现对电动多旋翼植保无人机升力特性的性能检测,针对不同型号、不同规格的电动多旋翼植保无人机在评价过程中存在无统一的评价指标问题,该文提出了一种半系留式电动多旋翼植保无人机升力特性的测试与评价方法,包括性能检测平台、升力特性测试方法及指标、升力特性的评价方法。为了验证方法的可行性,对3种不同机型(分别为四旋翼机型Ⅰ、六旋翼机型Ⅱ、八旋翼机型Ⅲ)进行了升力特性指标的性能测试试验。试验结果表明:3种机型在功率载荷、重量效率、热效比等方面有较大差异,功率载荷最好的机型Ⅲ比最差的机型Ⅰ大7.6 m N/W,重量效率最好的机型Ⅰ比最差的机型Ⅱ大0.33,热效比最好的机型Ⅲ比最差的机型Ⅱ大10.5 N/℃,反映出3种机型在设计过程中整个动力系统效率、机型整体结构和材料选择上的差异,从而在整机作业性能上表现出差异。在上述指标测试的基础上,结合无人机动力系统数学模型,提出了运用功率载荷、重量效率和热效比进行电动多旋翼植保无人机升力特性综合评价的评分方法,对上述3种机型进行综合评分的结果为:机型Ⅲ机型Ⅰ机型Ⅱ,该结果表明所提出的评价方法能有效对不同类型电动多旋翼植保无人机的升力特性进行综合评判。该文所给出的测试与评价方法,不仅能用于电动多旋翼植保无人机性能的评测,还能为机型性能的进一步改进提供参考。

关 键 词:无人机;模型;农业机械;电池动力;升力特性;功率载荷;重量效率;热效比
收稿时间:2018-01-09
修稿时间:2018-05-04

Comprehensive evaluation method for lifting characteristics of electric multi-rotor UAV for plant protection
Zang Ying,He Xingang,Zhou Zhiyan,Ming Rui,Zang Yu,Luo Xiwen and Lan Yubin. Comprehensive evaluation method for lifting characteristics of electric multi-rotor UAV for plant protection[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 69-77
Authors:Zang Ying  He Xingang  Zhou Zhiyan  Ming Rui  Zang Yu  Luo Xiwen  Lan Yubin
Affiliation:1. College of Engineering, South China Agricultural University / Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China; 2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Guangzhou 510642, China; 3. Key Laboratory of Key Technology on Agricultural Machine and Equipment of South China Agricultural University, Ministry of Education, P.R. China, Guangzhou 510642, China,1. College of Engineering, South China Agricultural University / Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China; 2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Guangzhou 510642, China; 3. Key Laboratory of Key Technology on Agricultural Machine and Equipment of South China Agricultural University, Ministry of Education, P.R. China, Guangzhou 510642, China,1. College of Engineering, South China Agricultural University / Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China; 2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Guangzhou 510642, China; 3. Key Laboratory of Key Technology on Agricultural Machine and Equipment of South China Agricultural University, Ministry of Education, P.R. China, Guangzhou 510642, China,1. College of Engineering, South China Agricultural University / Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China; 2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Guangzhou 510642, China; 3. Key Laboratory of Key Technology on Agricultural Machine and Equipment of South China Agricultural University, Ministry of Education, P.R. China, Guangzhou 510642, China,1. College of Engineering, South China Agricultural University / Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China; 2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Guangzhou 510642, China; 3. Key Laboratory of Key Technology on Agricultural Machine and Equipment of South China Agricultural University, Ministry of Education, P.R. China, Guangzhou 510642, China,1. College of Engineering, South China Agricultural University / Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China; 2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Guangzhou 510642, China; 3. Key Laboratory of Key Technology on Agricultural Machine and Equipment of South China Agricultural University, Ministry of Education, P.R. China, Guangzhou 510642, China and 1. College of Engineering, South China Agricultural University / Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China; 2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Guangzhou 510642, China; 3. Key Laboratory of Key Technology on Agricultural Machine and Equipment of South China Agricultural University, Ministry of Education, P.R. China, Guangzhou 510642, China
Abstract:
Keywords:unmanned aerial vehicle   models   agricultural machinery   battery power   lifting characteristics   power load   weight efficiency   thermal efficiency ratio
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号