首页 | 本学科首页   官方微博 | 高级检索  
     

基于无人机热红外与数码影像的玉米冠层温度监测
引用本文:杨文攀,李长春,杨浩,杨贵军,冯海宽,韩亮,牛庆林,韩东. 基于无人机热红外与数码影像的玉米冠层温度监测[J]. 农业工程学报, 2018, 34(17): 68-75
作者姓名:杨文攀  李长春  杨浩  杨贵军  冯海宽  韩亮  牛庆林  韩东
作者单位:河南理工大学测绘与国土信息工程学院;农业部农业遥感机理与定量遥感重点实验室北京农业信息技术研究中心;山西大同大学建筑与测绘工程学院;西安科技大学测绘科学与技术学院
基金项目:国家重点研发计划(2016YFD0300602);国家自然科学基金(61661136003,41471351);北京市农林科学院科技创新能力建设项目(KJCX20170423);河南省科技攻关项目(182102110186)
摘    要:快速、准确、无损地获取田间玉米冠层温度,对实现无人机辅助玉米抗旱性状的监测具有重要的意义。该文以无人机搭载热红外成像仪和RGB高清数码相机构成低空遥感数据获取系统,以不同性状的拔节期玉米为研究对象,采集试验区的无人机影像。利用含有已知三维坐标的几何控制板,进行数码影像几何校正,并利用校正后的数码影像对热红外影像进行几何配准。利用便携式手持测温仪测量辐射定标板黑白面的温度,对热红外影像进行辐射定标。利用高空间分辨率的数码影像对玉米进行分类并二值化处理,基于二值化结果提取热红外影像的玉米冠层像元,并提取试验区不同性状玉米的冠层温度。同时,利用便携式手持测温仪在地面同步测量玉米冠层温度,并与提取的冠层温度经行一致性分析,以验证评估基于热红外影像提取玉米冠层温度的效果。结果表明:提取的冠层温度值与地面实测值具有高度一致性(R2=0.723 6,RMSE=0.60℃),提取精度较高,表明基于无人机热红外影像获取玉米冠层温度的方法具有高通量的优势且精度较高。最后将试验区的植被覆盖度与提取的冠层温度进行对比分析,结果表明:玉米冠层温度与其覆盖度有显著的相关性(R2=0.534 5,P0.000 1),覆盖度越高冠层温度越低,反之则越高,说明玉米冠层覆盖度的大小影响玉米冠层温度的高低。该研究可为玉米育种材料的田间冠层温度监测提供参考。

关 键 词:无人机;农作物;温度;玉米;热红外影像;二值化;覆盖度
收稿时间:2018-04-16
修稿时间:2018-06-30

Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery
Yang Wenpan,Li Changchun,Yang Hao,Yang Guijun,Feng Haikuan,Han Liang,Niu Qinglin and Han Dong. Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 68-75
Authors:Yang Wenpan  Li Changchun  Yang Hao  Yang Guijun  Feng Haikuan  Han Liang  Niu Qinglin  Han Dong
Affiliation:1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. China, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China;,1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;,2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. China, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China;,2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. China, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China;,2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. China, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China;,2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. China, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China; 3. College of Architecture and Geomatics Engineering, Shanxi Datong University, Datong 037009, China;,1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. China, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China; and 2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. China, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China; 4. College of Geomatics, Xi''an University of Science and Technology, Xi''an 710054, China;
Abstract:
Keywords:unmanned aerial vehicle   crops   temperature   maize   thermal infrared imagery   binarization   coverage
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号