首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of a microbial acetyltransferase for modification of glyphosate: a novel tolerance strategy
Authors:Siehl Daniel L  Castle Linda A  Gorton Rebecca  Chen Yong Hong  Bertain Sean  Cho Hyeon-Je  Keenan Robert  Liu Donglong  Lassner Michael W
Institution:Verdia, 200 Penobscot Dr, Redwood City, CA 94063, USA. dan.siehl@pioneer.com
Abstract:N-Acetylation is a modification of glyphosate that could potentially be used in transgenic crops, given a suitable acetyltransferase. Weak enzymatic activity (k(cat) = 5 min(-1), K(M) = 1 mM) for N-acetylation of glyphosate was discovered in several strains of Bacillus licheniformis (Weigmann) Chester by screening a microbial collection with a mass spectrometric assay. The parental enzyme conferred no tolerance to glyphosate in any host when expressed as a transgene. Eleven iterations of DNA shuffling resulted in a 7000-fold improvement in catalytic efficiency (k(cat)/K(M)), sufficient for conferring robust tolerance to field rates of glyphosate in transgenic tobacco and maize. In terms of k(cat)/K(M), the native enzyme exhibited weak activity (4-450% of that with glyphosate) with seven of the common amino acids. Evolution of the enzyme towards an improved k(cat)/K(M) for glyphosate resulted in increased activity toward aspartate (40-fold improved k(cat)), but activity with serine and phosphoserine almost completely vanished. No activity was observed among a broad sampling of nucleotides and antibiotics. Improved catalysis with glyphosate coincided with increased thermal stability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号