首页 | 本学科首页   官方微博 | 高级检索  
     

边坡岩体稳定性的RBF人工神经网络预测模型
引用本文:邱秀梅,姜德贵. 边坡岩体稳定性的RBF人工神经网络预测模型[J]. 山东农业大学学报(自然科学版), 2008, 39(4)
作者姓名:邱秀梅  姜德贵
作者单位:山东农业大学水利土木工程学院,泰安,271018;山东农业大学水利土木工程学院,泰安,271018
摘    要:利用RBF人工神经网络理论,采用影响边坡稳定性的复合指标,以大量边坡工程的稳定状况为学习训练和预测样本,建立了RBF预报模型。讨论了基于RBF人工神经网络技术的边坡岩体稳定性分析方法及有效性。研究表明,用RBF人工神经网络方法预测边坡岩体的稳定状况是可行的。

关 键 词:(RBF)人工神经网络技术  复合指标  边坡岩体稳定性分析

PREDICTING MODELS TO ESTIMATE STABILITY OF ROCK SLOPE BASED ON RBF -ARTIFICIAL NEURAL NETWORK
QIU Xiu-mei,JIANG De-gui. PREDICTING MODELS TO ESTIMATE STABILITY OF ROCK SLOPE BASED ON RBF -ARTIFICIAL NEURAL NETWORK[J]. Journal of Shandong Agricultural University, 2008, 39(4)
Authors:QIU Xiu-mei  JIANG De-gui
Abstract:Using the theory of RBF-artificial neural network and the compound indices for affecting the stability of rock slopes,based on a large amound of rock slope engineering cases related to project,a RBF-model for prediction was set up.The practical effectiveness of the theory of RBF-artificial neural network to predict the safety of rock slopes was discussed.The study suggested that the method was feasible for prediction of rock slope stability.
Keywords:Method of RBF-artificial neural network  composite index to estimate stability of rock slope  analysis of rock slope stability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号