首页 | 本学科首页   官方微博 | 高级检索  
     


Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem
Authors:Fayez Raiesi  Esmael Asadi
Affiliation:(1) Soil Science Department, Faculty of Agriculture, Shahrekord University, P.O. Box 115, Shahrekord, Iran;(2) Natural Resources Department, Faculty of Agriculture, Shahrekord University, P.O. Box 115, Shahrekord, Iran
Abstract:Long-term overgrazing is known to influence soil microbiological properties and C sequestration in soil organic matter. However, much remains to be known concerning overgrazing impacts on soil microbial activity and litter turnover in heavily grazed rangelands of Central Iran. Aboveground litter decomposition of three dominant species (Agropyron intermedium, Hordeum bulbosum, and Juncus sp.) were studied using a litter bag experiment under field conditions in three range sites of Central Iran, a site with continuous grazing, a site ungrazed for 17 years with dominant woody species (80% cover), and a site ungrazed for 17 years with dominant pasture species (70% cover). Soil samples were taken from 0 to 30 cm depth and analyzed for their chemical and microbiological properties. Results demonstrate that soil organic C and total N contents and C/N ratios were similar for both ungrazed and grazed sites, while available P and K concentrations significantly decreased under grazed conditions. It was also evident that range grazing decreases soil respiration and microbial biomass C, suggesting a lower recent annual input of decomposable organic C. Nevertheless, grazing conditions had no significant effect on litter decomposition indicating soil microclimate is not affected by grazing animals in this ecosystem. It is concluded that overgrazing may presumably depress microbial activity through either reduced input of fresh plant residue into the surface soil or lack of living roots and exudates for stimulating microbial activity. This study also suggests that 17 years of livestock exclusion might be insufficient time for expected C accumulation in soil.
Keywords:Soil respiration  Microbial biomass C  Litter turnover  Grazed and ungrazed sites  Chahartag rangelands
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号