首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relationship between leaf gas exchange characteristics and productivity of potato clones grown at different temperatures
Authors:Michael K Thornton  Nasrullah J Malik  Robert B Dwelle
Institution:1. University of Idaho Research and Extension Center, 83660, Parma, ID
2. Actionaid, GPO Box #2943, H28, St. 2, F-8/3, Islamabad, Pakistan
3. Plant Science Division, University of Idaho, 83843, Moscow, ID
Abstract:The rate of dark respiration (Rd) and net photosynthesis (Pn) at various leaf temperatures was examined in three potato clones (Solatium tuberosum L.) differing in heat tolerance. Plants were grown at low (25/12 C, day/night) and high (35/25 C) greenhouse air temperatures for five weeks, beginning two weeks after tuberization. Gas exchange characteristics were measured by manometric and infrared gas analyzer techniques. Respiration:photosynthesis ratios were calculated as indicators of leaf carbon balance. High greenhouse temperature reduced whole plant and tuber growth rate of all clones, however, the reduction was highest in the cultivar Russet Burbank (heat sensitive). Gas exchange characteristics did not explain differences in heat tolerance. The heat tolerant cultivar Desiree had Rd similar to Russet Burbank, while the clone DTO-28, also heat tolerant, had lower Rd of mature leaves than Russet Burbank or Desiree. However, all clones had similar Rd of immature leaves. There was no apparent relationship between heat tolerance and Pn for the three clones. DTO-28 had lower respirationrphotosynthesis ratios of immature and mature leaves than Russet Burbank 4 weeks after the start of the high temperature treatment. Desiree had respiration:photosynthesis ratios as high as Russet Burbank. At different sampling times, Rd increased in a linear and curvilinear manner with increasing leaf temperature up to 40 C. Heat tolerant and sensitive clones had similar rates of increase in Rd with increasing leaf temperature. Simultaneous measurement of Rd and Pn did not help explain differences in heat tolerance among clones. However, determination of respirationrphotosynthesis ratios may help explain the physiological basis for heat tolerance of some clones.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号