Genetically engineered viral insecticides–A progress report 1986 1989 |
| |
Authors: | David H. L. Bishop |
| |
Abstract: | Among the viruses that are pathogenic for insect species, baculoviruses have been shown to be useful as insecticides for pest control. In some cases they have been used as cost-effective and environmentally acceptable alternatives to chemical insecticides. However, because viruses need to be ingested and replicate extensively in their host before they kill it, baculovirus insecticides are much slower than chemicals or other reagents that kill insects either on contact or shortly after ingestion. The objective of the programme of genetic engineering of baculovirus insecticides is to improve their speed of action while maintaining their host specificity and other attributes that make them desirable alternatives to chemical pesticides. Since 1986 four field releases have been undertaken involving genetically engineered baculovirus insecticides. The first release used a genetically marked Autographa californica nuclear polyhedrosis virus (AcNPV). The study began in 1986 and was terminated in 1987. The results demonstrated that an innocuous piece of DNA, appropriately positioned in the AcNPV genome, was an effective means to tag the virus without affecting its phenotype, allowing it to be identified in bioassays of plant and soil samples. The second release, in 1987, involved a genetically marked virus from which the gene coding for the protective polyhedrin protein of the virus had been removed. The field data obtained with this virus showed that it did not persist in the environment, neither in soil, nor on vegetation, nor in the corpses of caterpillars. The third and fourth releases were undertaken in 1988. For one of these studies the marked, polyhedrin-negative virus was again used. In the other study a polyhedrin-negative virus that contained a junk' (/?-galactosidase) gene was employed. |
| |
Keywords: | |
|
|