首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite Tetranychus kanzawai
Authors:Yasuhiko Aiki
Institution:Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
Abstract:Insecticide resistant strains of the kanzawa spider mite, Tetranychus kanzawai, with insensitive AChE have spread widely throughout Japan. To clarify the molecular mechanism of this insensitivity, acetylcholinesterase (AChE) cDNA of the resistant strains of T. kanzawai was determined based on the AChE cDNA sequence of Tetranychus urticae and the sequences compared between the two spider mite species. The cDNA encoded 687 amino acids of AChE primary structure showing high homology to T. urticae. Amino acid homology indicated that the AChE is an Ace paralogous type of insect AChE. There were only three substitutions of amino acid residues between the AChEs of the two species. In the AChE of the resistant strain of T. kanzawai, one of the three amino acid substitutions was Phe439Trp, which lines the acyl pocket of the enzyme active site. Considering that the same substitution was found at the equivalent position of Ace paralogous AChE in the resistant strain of Culex tritaeniorhynchus, Phe439Trp substitution likely plays an important role in the insecticide insensitivity of the mite AChE.
Keywords:Acetylcholinesterase  Organophosphate resistance  Amino acid substitution  Spider mite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号