首页 | 本学科首页   官方微博 | 高级检索  
     


Biological degradation of pyrogenic organic matter in temperate forest soils
Affiliation:1. Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin''an, Hangzhou 311300, China;2. Agricultural Technology Extension Centre, Lin''an Municipal Bureau of Agriculture, Lin''an, Hangzhou 311300, China;3. Department of Plant and Soil Sciences, University of Delaware, Delaware 19716, USA;1. State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China;2. Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Huitong 418307, PR China;3. University of Chinese Academy of Sciences, Beijing 100049, PR China
Abstract:Pyrogenic organic matter (PyOM), derived from the incomplete combustion of plant biomass and fossil fuels, has been considered one of the most stable pools of soil organic matter (SOM) and a potentially important terrestrial sink for atmospheric CO2. Recent evidence suggests that PyOM may degrade faster in soil than previously thought, and can affect native SOM turnover rates. We conducted a six-month laboratory incubation study to better understand the processes controlling the degradation of PyOM in soils using dual-enriched (13C/15N) PyOM and its precursor wood (Pinus ponderosa). We examined the effects of soil type and inorganic N addition on PyOM and wood C and N mineralization rates, microbial C utilization patterns, and native SOM turnover rates. PyOM charred at 450 °C or its precursor pine wood was incubated in two temperate forest subsoils with contrasting short range order (SRO) clay mineralogy (granite versus andesite parent material). Duplicates of experimental treatments with and without PyOM added were sterilized and abiotic C mineralization was quantified. In a second incubation, PyOM or wood was incubated in granitic soil with and without added NH4NO3 (20 kg N ha−1). The fate of 13C/15N-enriched PyOM and wood was followed as soil-respired 13CO2 and total extractable inorganic 15N. The uptake of 13C from PyOM and wood by soil microbial community groups was quantified using 13C-phospholipids fatty acids (PLFA). We found that (1) The mean residence time (MRT) of PyOM-C was on a centennial time scale (390–600 yr) in both soil types; (2) PyOM-C mineralization was mainly biologically mediated; (3) Fungi more actively utilized wood-C than PyOM-C, which was utilized by all bacteria groups, especially gram (+) bacteria in the andesite (AN) soil; (4) PyOM-N mineralization was 2 times greater in granite (GR) than in AN soils; (5) PyOM additions did not affect native soil C or N mineralization rates, microbial biomass, or PLFA-defined microbial community composition in either soil; (6) The addition of N to GR soil had no effect on the MRT of C from PyOM, wood, or native SOM. The centennial scale MRT for PyOM-C was 32 times slower than that for the precursor pine wood-C or native soil C, which is faster than the MRT used in ecosystem models. Our results show that PyOM-C is readily utilized by all heterotrophic microbial groups, and PyOM-C and -N may be more dynamic in soils than previously thought.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号