首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and nutrition
Authors:Hawkins B J  Henry G  Kiiskila S B R
Institution:Centre for Forest Biology, University of Victoria, P.O. Box 3020, Victoria, B.C. V8W 3N5, Canada.
Abstract:Allocation of biomass and nutrients to shoots and roots was followed for three years in fast and slow growing populations of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), a fast growing pioneer species, and amabilis fir (Abies amabilis Dougl. ex J. Forbes), a slow growing shade-tolerant species. Seedlings were grown for three seasons in five nutrient treatments containing varying proportions of nitrogen and phosphorus (N:P). In both species, growth was greatest in the 250:20 N:P treatment followed by the 100:60 and 100:20 treatments. Vector analysis showed that, in both species, relative to the 100:20 treatment, seedlings in the 20:20 treatment were N deficient and seedlings in the 100:4 treatment were P deficient, i.e., where deficiency is defined to mean that an increase in nutrient supply increases nutrient content, nutrient concentration and plant dry weight. Seedlings in the 100:60 treatment had a higher P content than seedlings in the 100:20 treatment but the same dry weight, indicative of what Timmer and Armstrong (1987) termed luxury consumption. No nutrient retranslocation was observed in either species until the third growing season. In Douglas-fir, the greatest percentage of nutrients was exported from one-year-old shoots between May and July of the third growing season to support new growth. The total amount and percent of nutrients retranslocated was higher in Douglas-fir than in amabilis fir. Amabilis fir seedlings also exported N and P from older shoots, but this was later partially replenished. In both species, P retranslocation was greatest in treatments with a high N:P ratio. Nitrogen retranslocation was greatest in amabilis fir seedlings in treatments with a low N:P ratio, and greatest in Douglas-fir seedlings in the 250:20 and 100:60 treatments. Potassium retranslocation was correlated with seedling size. Douglas-fir retranslocated more of its shoot N reserves into new growth at the expense of older needles when soil fertility was high and sinks were strong. Otherwise, both species preferentially translocated the elements in short supply. Thus, retranslocation varied with the ecological characteristics of species, the relative availability of soil nutrients and sink strength.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号