首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A comparison of the antinociceptive effects of xylazine, detomidine and romifidine on experimental pain in horses
Authors:Moens Yves  Lanz Francisca  Doherr Marcus G  Schatzmann Urs
Institution:Department of Clinical Veterinary Sciences, Anesthesiology section, Länggass-strasse 124, CH-3012 Bern, Switzerland;NeuroCenter, Department of Clinical Veterinary Sciences, University of Berne, Bremgartenstrasse 109 a, CH-3012 Bern, Switzerland
Abstract:Objective To study the analgesic potency of the α2‐agonist romifidine in the horse using both an electrical current and a mechanical pressure model for nociceptive threshold testing. In addition, a comparison was made with doses of detomidine and xylazine that produce equivalent degrees of sedation. Study design Randomized, placebo‐controlled, blinded cross‐over study. Animals Six adult Swiss warmblood horses, one mare and five geldings, weighing from 530 to 650 kg and aged 6–15 years. Methods Nociceptive thresholds were measured using an electrical stimulus applied to the coronary band and using a pneumatically operated pin pressing on the cannon bone. Measurements were made immediately before and every 15 minutes for 2 hours after IV injection of the test substances. Lifting of the foot indicated the test end point. Results The three α2‐agonists caused a temporary increase in nociceptive thresholds with a maximal effect within 15 minutes and a return to baseline levels within 1 hour. Using electrical current testing nociceptive thresholds were significantly different from placebo (mean ± SD) for detomidine at 15 minutes (from control 5.8 ± 0.9 to 23.3 ± 3.9 mA, p = 0.0066) and 30 minutes (from control 6.6 ± 1.1 to 18.8 ± 3.3 mA, p = 0.0091). The difference was significant for romifidine at 15 minutes only (from control 5.8 ± 0.9 to 18.7 ± 3.8 mA, p = 0.0066). With mechanical pressure testing nociceptive thresholds were significantly different from control for detomidine at 15 minutes (from 3.2 ± 0.2 to 6.2 ± 0.5 N, p = 0.00076) and 30 minutes (from 3.2 ± 0.7 to 5.7 ± 0.8 N, p = 0.0167). The difference was significant for xylazine at 15 minutes (from control 3.2 ± 0.2 to 5.6 ± 0.7 N, p = 0.0079). At 15 minutes the order of magnitude of the measured antinociceptive effect was significantly different between the two pain tests for both romifidine and detomidine, but not for xylazine. For romifidine, the increase of mean thresholds compared to placebo was 4.0 ± 1.3 times placebo levels with the electrical current test compared to 1.3 ± 0.3 times for the mechanical pressure test (p = 0.037). For detomidine, the increase of mean thresholds compared to placebo was 5.4 ± 1.7 times control levels with the electrical current test compared to 2.0 ± 0.2 times for the mechanical pressure test (p = 0.040). This represents a 2.7 (romifidine) and 3.4 times (detomidine) greater increase in thresholds using electrical current testing compared to the use of mechanical pressure testing. Conclusion and clinical relevance This study demonstrates the analgesic potential of α2‐agonists in the horse for somatic pain and that they can have quantitatively different antinociceptive effects according to the antinociceptive test used.
Keywords:α2-agonists  analgesia  antinociception  horse  pain test
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号