首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA-ARIMA模型的高血压发病率预测
引用本文:马亮亮. 基于PCA-ARIMA模型的高血压发病率预测[J]. 张家口农专学报, 2013, 0(2): 26-29
作者姓名:马亮亮
作者单位:攀枝花学院数学与计算机学院
基金项目:国家自然科学基金资助项目:基于数据挖掘的区域急诊病病谱时空预测模型研究(60673192)
摘    要:目的高血压发病率是政府和相关医学工作者预防和监测高血压的重要依据之一。方法利用主成分分析(principal component analysis,PCA)对因子进行线性筛选,获得保留因子后利用ARIMA进行建模预测,即为PCA-ARIMA多维时间序列组合预测模型。结果高血压发病率的拟合与独立预测结果表明,PCA-ARIMA优于PCA-MLR、ARIMA等参比模型。结论本文提出的基于主成分分析和ARIMA模型(PCA-ARIMA模型)的建模有助于提高模型的预测精度。

关 键 词:主成分分析  时间序列  ARIMA  多元线性回归

Prediction of Hypertension Incidence Rate Based on PCA-ARIMA Model
MA Liang-liang. Prediction of Hypertension Incidence Rate Based on PCA-ARIMA Model[J]. , 2013, 0(2): 26-29
Authors:MA Liang-liang
Affiliation:MA Liang-liang(College of Mathematics and Computer,Panzhihua University,Panzhihua 617000,Sichuan,China)
Abstract:Objective Hypertension incidence rate is an important basis for government and related medical workers to prevent and to survey hypertension.Methods This paper proposed a combination prediction model(PCA-ARIMA),i.e.prediction model of PCA-ARIMA multidimensional time series combination,in which the impact factors are filtered by principal component analysis(PCA),and then the model were established based on ARIMA.Results The results of fitting of hypertension incidence rate and independent prediction showed that PCA-ARIMA’s performance was superior to reference models.Conclusion The proposed model based on the principal component analysis and ARIMA model could help improve prediction precision of the model.
Keywords:principal component analysis  time series  ARIMA  multiple linear regressions
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号