首页 | 本学科首页   官方微博 | 高级检索  
     

不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析
引用本文:赵雅儒,邳植,刘蕊,马语嫣,吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. DOI: 10.11924/j.issn.1000-6850.casb2021-1062
作者姓名:赵雅儒  邳植  刘蕊  马语嫣  吴则东
作者单位:1.黑龙江大学现代农业与生态环境学院,哈尔滨 150080;2.黑龙江省普通高校甜菜遗传育种重点实验室/黑龙江大学,哈尔滨 150080;3.黑龙江省种业技术服务中心,哈尔滨,150080
基金项目:财政部和农业农村部:国家现代农业产业技术体系资助(CARS-170111);黑龙江大学研究生创新科研项目资助(YJSCX2021-220HLJU)
摘    要:利用35对SSR引物分析40对不同的甜菜单胚细胞质雄性不育系与保持系的遗传多样性。结果表明:每对引物扩增得到的条带数在2~12之间,有效等位基因数(Ne)、Shannon’s信息指数(I)、Nei’s基因多样性指数(H)的平均值分别为2.306、0.891和0.519。采用类平均法(UPGMA)进行聚类分析并计算遗传距离。聚类结果显示,除供试材料22与其他材料的遗传距离较大,亲缘关系较远,单独为一类群;其余的供试甜菜品系可分为4个类群;共有14对甜菜单胚细胞质雄性不育系与保持系完全聚合在一起,说明经过回交后,不育系和保持系的细胞核基因组之间几乎达到一致,纯度较高,今后可以直接应用于甜菜育种中;另有26对纯度较低,遗传距离较大,还需要继续进行回交至纯合。80份供试材料的遗传距离最大为0.462,最小为0.120。14对聚合在一起的原配组中的不育系之间遗传距离各不相同,今后可选择14对中遗传距离较大的不育系和其异型保持系配制二元不育系,用于杂交种中的母本。加大培育出甜菜新品种的可能性,同时减少了育种工作中的盲目性,有效的提高了甜菜育种效率。

关 键 词:甜菜  SSR分子标记  细胞质雄性不育系  遗传多样性
收稿时间:2021-11-05

Genetic Diversity Analysis of Monogerm Cytoplasmic Male Sterile Lines and Maintainer Lines of Sugar Beet
ZHAO Yaru,PI Zhi,LIU Rui,MA Yuyan,WU Zedong. Genetic Diversity Analysis of Monogerm Cytoplasmic Male Sterile Lines and Maintainer Lines of Sugar Beet[J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 35-40. DOI: 10.11924/j.issn.1000-6850.casb2021-1062
Authors:ZHAO Yaru  PI Zhi  LIU Rui  MA Yuyan  WU Zedong
Affiliation:1.College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080;2.Key Laboratory of Sugar Beet Genetic Breeding/Heilongjiang University, Harbin 150080;3.Heilongjiang Seed Industry Technical Service Center, Harbin 150080
Abstract:35 pairs of SSR primers were used to analyze the genetic diversity of 40 pairs of monogerm cytoplasmic male sterile lines and maintainer lines of sugar beet. The results showed that: the number of bands amplified by each pair of primers ranged from 2 and 12, and the average value of effective number of alleles (Ne), Shannon’s information index (I) and Nei’s gene diversity index (H) was 2.306, 0.891 and 0.519 respectively. The UPGMA method was used for cluster analysis and genetic distance calculation. The cluster analysis results showed that tested material 22 had a far genetic distance from other materials, which indicated a distant genetic relationship, and the material belonged to a separate group. The rest of the tested sugar beet lines could be divided into four groups. A total of 14 pairs of monogerm cytoplasmic male sterile lines and maintainer lines of sugar beet were completely polymerized together, indicating that after backcrossing, the nuclear genomes of male sterile lines and maintainer lines were almost identical with high purity, which could be directly used in sugar beet breeding in the future. The other 26 pairs of low purity, large genetic distance, still need to continue to backcross to homozygous. The maximum genetic distance of the 80 tested materials was 0.462 and the minimum was 0.120. The genetic distances of the sterile lines in the 14 pairs of primary mating groups were different. In the future, sugar beet cytoplasmic male sterile lines with large genetic distance from the 14 pairs could be selected with their heterogeneous maintainer lines to prepare binary male sterile lines for female parents in hybrids. The study can promote new sugar beet variety breeding and effectively improve the breeding efficiency.
Keywords:sugar beet  SSR molecular marker  cytoplasmic male sterile line  genetic diversity  
点击此处可从《中国农学通报》浏览原始摘要信息
点击此处可从《中国农学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号