基于多特征融合的植物叶片识别研究 |
| |
摘 要: | 植物叶片识别作为植物自动分类识别的重要分支,有着很高的实际应用价值。针对当前叶片特征描述存在的局限和叶片识别准确率较低的实际,以叶片图像为研究对象,首先对图像进行预处理,在提取叶片几何特征和纹理特征的基础上,设计描述叶片轮廓的距离矩阵和角点矩阵,通过计算基于几何特征、纹理特征和角点距离矩阵的综合相似度对叶片进行精确识别。对Flavia数据集中的32类共计960幅叶片图像进行训练和测试,结果表明,基于叶片图像多特征融合的识别方法对叶片特征描述能力更强,识别准确率更高,对Flavia数据集的识别率可达97.50%,具有较好的识别效果。
|
本文献已被 CNKI 等数据库收录! |
|