首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A mechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: an axial locking compression plate and two abaxial transarticular cortical screws versus an axial dynamic compression plate and two abaxial transarticular cortical screws
Authors:Sod Gary A  Riggs Laura M  Mitchell Colin F  Martin George S
Institution:Equine Health Studies Program, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA. gsod@vetmed.lsu.edu
Abstract:Objectives: To compare in vitro monotonic biomechanical properties of an axial 3‐hole, 4.5 mm narrow locking compression plate (ELCP) using 5.0 mm locking screws and 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (ELCP–TLS) with an axial 3‐hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP–TLS) for equine proximal interphalangeal (PIP) joint arthrodesis. Design: Experimental. Animal Population: Cadaveric adult equine forelimbs (n=18 pairs). Methods: For each forelimb pair, 1 PIP joint was stabilized with an axial ELCP using 5.0 mm locking screws and 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 PIP joint with an axial 3‐hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion. Six matching pairs of constructs were tested in single cycle to failure under axial compression, 6 construct pairs were tested for cyclic fatigue under axial compression, and 6 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t‐test within each group with statistical significance set at P<.05. Results: Mean yield load, yield stiffness, and failure load under axial compression, single cycle to failure, of the DCP–TLS fixation were significantly greater than those of the LCP–TLS fixation. There was no significant difference between the mean number of cycles to failure in axial compression of the LCP–TLS and the DCP–TLS fixations. Mean yield load, yield stiffness, and failure load under torsion, single cycle to failure, of the LCP–TLS fixation were significantly greater than those of the DCP–TLS fixation. Conclusion: The DCP–TLS construct provided significantly greater stability under axial compression in single cycle to failure than the ELCP–TLS construct, the ELCP–TLS construct provided significantly greater stability under torsional loading in single cycle to failure than the DCP–TLS construct, and there was no significant difference in stability between the 2 constructs for cyclic loading under axial compression.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号