首页 | 本学科首页   官方微博 | 高级检索  
     


Construction of a recombinant thermostable beta-amylase-trehalose synthase bifunctional enzyme for facilitating the conversion of starch to trehalose
Authors:Wang Jia-Hung  Tsai Meng-Yin  Lee Guan-Chiun  Shaw Jei-Fu
Affiliation:Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan.
Abstract:A fusion gene that encoded a polypeptide of 1495 amino acids was constructed from the beta-amylase (BA) gene of Clostridium thermosulfurogenes and trehalose synthase (TS) gene of Thermus thermophilus. The fused gene was overexpressed in Escherichia coli, and a recombinant bifunctional fusion protein with BA at the N-terminal (BATS) or C-terminal (TSBA) of TS having both beta-amylase and trehalose synthase activities with an apparent molecular mass of 164 kDa was obtained. BATS or TSBA catalyzes the sequential reaction in which maltose is formed from starch and then is converted into trehalose. The Km values of the BATS and TSBA fusion enzymes for the reaction from starch to trehalose were smaller than those of an equimolar mixture of BA and TS (BA/TS). On the other hand, the kcat value of BATS approximated that of the BA/TS mixture, but that of TSBA exceeded it. TSBA showed much higher sequential catalytic efficiency than the separately expressed BA/TS mixture. The catalytic efficiency of TSBA or BATS was 3.4 or 2.4 times higher, respectively, than that of a mixture of individual enzymes, showing the kinetic advantage of the fusion enzyme. The thermal stability readings of the recombinant fusion enzymes BATS and TSBA were better than that of the mixture of individual recombinant enzymes. These results apparently demonstrate that fusion enzymes catalyzing sequential reactions have kinetic advantages over a mixture of both enzymes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号