首页 | 本学科首页   官方微博 | 高级检索  
     


Apparent availability of nitrogen in composted municipal refuse
Authors:E. Iglesias-Jimenez  C. E. Alvarez
Affiliation:(1) CSIC, Instituto de Productos Naturales y Agrobiologia de Canarias, Avda. Francisco Sánchez 3, E-38206 La Laguna, Tenerife, Canary Islands, Spain
Abstract:The use of composted municipal refuse on agricultural land requires prior knowledge of the interactions among compost, soil, and plants. Research into the availability of N in highly matured municipal refuse compost is particularly important considering the current concern about groundwater contamination by NOinf3sup--N. A greenhouse pot bioassay was conducted to determine the percentage of short-term apparent bioavailable N of a highly matured refuse compost and its relative efficiency in supplying inorganic N to the soil-plant system in comparison with NH4NO3. Municipal refuse (after 165 days of composting) was applied at rates equivalent to 10, 20, 30, 40, and 50 t ha-1 to a ferrallitic soil from Tenerife Island (Andeptic Paludult). NH4NO3 was applied at rates equivalent to the total N content of the compost treatments. Perennial ryegrass (Lolium perenne L.) was grown in 3-kg pots and the tops were harvested at regular intervals after seedling emergence. The compost increased dry matter yield, soil mineral N, and plant N uptake proportional to the applied rate. These increases were significantly higher than the control at an application rate of 20 t ha-1. After 6 months the apparent bioavailable N ranged from 16 to 21%. The relative efficiency was 43% after 30 days. This suggests that large inputs of inorganic N into soil can be obtained with high rates of this kind of compost, with a potential for NOinf3sup--N contamination. However, applied at moderate rates in our bioassay (<50 t ha-1), compost showed a low N-supplying capacity to ryegrass, i.e. a small fraction of the mineralized compost N was used by plants in the course of time. This was ascribed to a partial biological immobilization. This pattern of N availability in highly matured municipal refuse compost, positive net mineralization but partial immobilization, is similar to the pattern of N availability in biologically active soils and is therefore extremely interesting for the conservation of N in agro-ecosystems.
Keywords:Compost  N mineralization  Organic N  Plant N uptake  Soil N availability  N immobilization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号