首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch
Authors:Hyun-Seok Kim  Kerry C Huber
Institution:School of Food Science, University of Idaho, P.O. Box 442312, Moscow, ID 83844-2312, USA
Abstract:This work fractionated waxy and normal wheat starches into highly purified A- and B-type granule fractions, which were representative of native granule populations within parent native wheat starches, to accurately assess starch characteristics and properties of the two granule types. Wheat starch A- and B-type granules possessed different morphologies, granule specific surface area measurements, compositions, relative crystallinities, amylopectin branch chain distributions, and physical properties (swelling, gelatinization, and pasting behaviors). Within a genotype, total and apparent amylose contents were greater for A-type granules, while lipid-complexed amylose and phospholipid contents were greater for B-type granules. B-type (relative to A-type) granules within a given genotype possessed a greater abundance of short amylopectin branch chains (DPn < 13) and a lesser proportion of intermediate (DPn 13–33) and long (DPn > 33) branch chains, contributing to their lower relative crystallinities. Variation in amylose and phospholipid characteristics appeared to account for observed differences in swelling, gelatinization, and pasting properties between waxy and normal wheat starch fractions of a common granule type. However, starch granule swelling and gelatinization property differences between A- and B-type granules within a given genotype were most consistently explained by their differential amylopectin chain-length distributions.
Keywords:Waxy and normal wheat starch  A-type and B-type  Granule size  Amylopectin structure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号