首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Antifeedant and toxic effects of naturally occurring and synthetic quinones to the cabbage looper, Trichoplusia ni
Authors:Yasmin Akhtar  Murray B Isman  Lourdes A NiehausChi-Hoon Lee  Hoi-Seon Lee
Institution:a Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
b Department of Bioenvironmental Chemistry, College of Agriculture & Life Science, Chonbuk National University, Jeonju 561-756, South Korea
c Division of Planning and Research, National Institute of Health, Cheongwon 363-951, South Korea
Abstract:We investigated the feeding deterrent effects and toxicity of naturally occurring and synthetic quinones to the cabbage looper, Trichoplusia ni. Feeding deterrent effects were determined via a leaf disc choice bioassay. Based on DC50 values, 1,4-naphthoquinone was the most active antifeedant (DC50 = 1.8 μg/cm2) followed by juglone (DC50 = 2.1 μg/cm2), 2-methoxy-1,4-naphthoquinone (DC50 = 2.6 μg/cm2), plumbagin (DC50 = 3.3 μg/cm2), and 2,3-dimethoxy-5-mehtyl-1,4-benzoquinone (DC50 = 4.2 μg/cm2) in third instar cabbage looper larvae. 2-Bromo-1,4-naphthoquinone, 2-chloro-3-morpholino-1,4-naphthoquinone, 1,8-dihydroxy-anthraquinone, 2-methyl-1,4-naphthoquinone and naphthazarin had DC50 values ranging from 8.4 to 10.1 μg/cm2. Juglone and plumbagin were able to provide protection to intact cabbage plants in a greenhouse experiment. Cabbage looper larvae consumed less leaf area and weighed less on cabbage plants treated with either of these naturally occurring quinones. Most of the quinones demonstrated levels of antifeedant activity greater than neem, a positive control, in laboratory bioassays. The level of activity for juglone was comparable to neem in the greenhouse experiment. There was also a reduction in the number of larvae on treated plants compared with the negative control. Structure-activity relationships suggest that the antifeedant effects of the tested quinones depend on the number and position of hydroxyl and methoxyl substituents of quinones. Most of the quinones were of medium-low toxicity to third instar cabbage looper larvae via topical administration. Some of these quinones could have potential for development as commercial insect control agents targeting the feeding behavior of insects with minimal toxicity, provided that their impacts on non-target organisms and environment are minimal.
Keywords:Antifeedant effects  Cabbage looper  Quinones  Neem  Structure-activity relationship  Toxicity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号