Development and physiology of gastric dilation air sacculitis in Chinook salmon, Oncorhynchus tshawytscha (Walbaum) |
| |
Authors: | Forgan L G Forster M E |
| |
Affiliation: | School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. |
| |
Abstract: | The syndrome known as gastric dilation air sacculitis (GDAS) has previously been shown to affect Chinook salmon, Oncorhynchus tshawytscha, in seawater (SW) aquaculture. Feed and osmoregulatory stress have been implicated as potential epidemiological co-factors. The development and physiology of GDAS was investigated in SW and freshwater (FW) adapted smolts. Diet A (low-cohesion pellets) and diet B (high-cohesion pellets) were fed to both FW- and SW-adapted fish. GDAS was induced only in the SW trial on feeding diet A. Stimulated gastro-intestinal (GI) smooth muscle contractility, and fluid transport by the pyloric caeca were different in GDAS-affected fish, which also showed osmoregulatory dysfunction. Cardiac stomach (CS) smooth muscle contractility in response to acetylcholine and potassium chloride (KCl) was significantly reduced in fish fed diet A relative to controls from weeks 3-5. In contrast, maximal pyloric sphincter (PS) circular smooth muscle contraction in response to KCl was significantly elevated in fish fed diet A in weeks 4 and 5. Serum osmolality was elevated in GDAS-affected fish from week 2 of the SW trial. Fluid transport from the mucosal to serosal surface of isolated pyloric caeca was significantly reduced in weeks 3, 4 and 5 in SW fish fed diet A. Gastric evacuation from the stomach of healthy fish was shown to be significantly different when diets of low- and high-cohesion were fed. The results are consistent with the intestinal brake playing a role in the development of the disease. |
| |
Keywords: | chinook salmon cohesion feed GDAS osmoregulation smooth muscle |
本文献已被 PubMed 等数据库收录! |
|