首页 | 本学科首页   官方微博 | 高级检索  
     


Gas exchange and dry matter allocation responses to elevation of atmospheric CO(2) concentration in seedlings of three tree species
Authors:Hollinger D Y
Affiliation:Forestry Research Centre, Forest Research Institute, P.O. Box 31-011, Christchurch, New Zealand.
Abstract:Photosynthetic rates of 13-month-old Pinus radiata D. Don, Nothofagus fusca (Hook f.) ?rst. and Pseudotsuga menziesii (Mirb.) Franco seedlings grown and measured at elevated atmospheric concentrations of CO(2) (~620 microl l(-1)) were 32 to 55% greater than those of seedlings grown and measured at ambient (~310 microl l(-1)) concentrations of CO(2). Seedlings grown in ambient and elevated concentrations of CO(2) had similar rates of photosynthesis when measured at ~620 microl l(-1) CO(2), but when measured at ~310 microl l(-1) CO(2), the P. radiata and N. fusca seedlings which were grown at elevated CO(2) had lower rates of photosynthesis than the seedlings grown at an ambient concentration of CO(2). Stomatal conductances in general were lower when measured at ~620 microl l(-1) CO(2) than at ~310 microl l(-1) CO(2). Stomatal conductances declined in all species grown at both CO(2) concentrations when the leaf-air water vapor concentration gradient (DeltaW) was increased from 10 to 20 mmol H(2)O mol(-1) air. The percent enhancement in photosynthesis for P. radiata and P. menziesii at elevated CO(2) was greater at 20 mmol than at 10 mmol DeltaW, suggesting that elevated CO(2) may moderate the effects of atmospheric water stress. Dry matter allocation patterns were not significantly different for plants grown in ambient or high CO(2) air.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号