首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cationized albumin-biocoatings for the immobilization of lipid vesicles
Authors:Ritz Sandra  Eisele Klaus  Dorn Jan  Ding Shaohua  Vollmer Doris  Pütz Sabine  Weil Tanja  Sinner Eva-Kathrin
Institution:Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
Abstract:Tethered lipid membranes or immobilized lipid vesicles are frequently used as biomimetic systems. In this article, the authors presented a suitable method for efficient immobilization of lipid vesicles onto a broad range of surfaces, enabling analysis by quantitative methods even under rigid, mechanical conditions-bare surfaces such as hydrophilic glass surfaces as well as hydrophobic polymer slides or metal surfaces such as gold. The immobilization of vesicles was based on the electrostatic interaction of zwitterionic or negatively charged lipid vesicles with two types of cationic chemically modified bovine serum albumin (cBSA) blood plasma proteins (cBSA-113 and cBSA-147). Quantitative analysis of protein adsorption was performed as the cBSA coatings were characterized by atomic force microscopy, surface zeta potential measurement, fluorescence microscopy, and surface plasmon spectroscopy, revealing a maximal surface coverage 270-280?ng/cm(2) for 0.02 mg/ml cBSA on gold. Small unilamellar vesicles as well as giant unilamellar vesicles (GUVs) were readily immobilized (~15?min) on cBSA coated surfaces. GUVs with 5-10 mol% negatively charged 1,2,-dipalmitoyl-sn-glycero-3-phosphoglycerol remained stable in liquid for at least 5 weeks.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号