首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Eclipse Effects on CO2 Profile within and above Sorghum Canopy
Abstract:Abstract

We analyzed the effects of a partial solar eclipse (22 July 2009) on microclimate including vertical gradients of CO2 concentrations (CO2]), so called CO2] profile, in a mature sorghum canopy. Together with CO2 measurement, major photosynthetic drivers of microclimate, light intensity, temperature and atmospheric H2O concentration (H2O]) were also measured simultaneously at the same place and height. CO2] at 6.0, 3.2, 2.1, 1.4, 0.7, 0 m above the ground (canopy height was 3.2 m) increased by 5.8, 4.8, 9.0, 7.8, 6.4, 7.6μmol mol-1, respectively, from 1 hour before the eclipse maximum to the eclipse maximum, during which theincident solar radiation above the canopy dropped by 1473 μmol photons m-2 s-1. However, it declined by 3.4, 10.6, 10.8, 6.0, 5.4, and 5.8μmol mol-1, respectively, from the eclipse to 1 hour later,during which the incident radiation increased by 1350μmol photons m-2 s-1. The CO2] profile during the eclipse was uniform except for higher CO2] near the ground. Comparative analysis of theeffect of light intensity on the microclimate during the eclipse-induced light decreasing phase (ELDP) and eclipse-induced light increasing phase (ELIP) revealed that CO2], H2O], temperature and relative humidity (RH) are significantly correlated with the light intensity above the canopy in a nearly linear fashion. Furthermore it indicated that detected less light-reacted canopy photosynthesis at a higher layer within the canopy during ELIP might be due to slower response of stomatal opening (than closing) to the light intensity above the canopy.
Keywords:Canopy photosynthesis  CO2 profi le  Eclipse  Microclimate  Sorghum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号