首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microbial Sulfate Reduction and Biogeochemistry of Arsenic and Chromium Oxyanions in Anaerobic Bioreactors
Authors:Ronald R Cohen  Toshisuke Ozawa
Institution:2. Division of Environmental Science and Engineering, Colorado School of Mines, Chauvenet Hall, Golden, CO, 80401, USA
3. 161-6 No. 101 Hangangro 1(il)-ga, Yongsan-gu, Seoul, South Korea
Abstract:A pilot-scale anaerobic bioreactor with high levels of microbial sulfate reduction, known to be capable of removing cationic metals from a metal- and acid-contaminated waste stream, was utilized to determine if the system would be effective in removing metals in the form of oxyanions such as arsenate and chromate. The system removed 90 % to >99 % of the arsenic and between 86 % and 94 % of the chromium from a waste stream containing 5 mg/L of each. Cadmium, copper, iron, lead, and zinc also were removed. An equilibrium geochemistry computer modeling code, MINTEQAK, modified from MINTEQA2, was used for the chemical modeling of processes in the bioreactor. Experimental evidence on the chemical and biological reduction of arsenic and chromium and fluorescent diffraction analysis of precipitates support the following hypotheses: the primary removal process for chromium was the reduction of Cr(VI) to Cr(III) by sulfides, followed by precipitation of chromium hydroxide Cr(OH)3(s)]; removal of arsenic was by direct microbial enzymatic reduction of As(V) to As(III) followed by precipitation of arsenic sulfides (As2S3 or AsS). Experimental evidence and modeling with MINTEQAK confirmed that 90 % to 95 % of the removal of arsenic and chromium occurred in the first quarter volume of the bioreactor. Additional removal of arsenic and chromium occurred in the remaining volume of the bioreactor. The use of a sulfate reduction-based anaerobic treatment system was effective for metal-laden wastewater with elevated concentrations of arsenic and chromium.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号