首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sorption and degradation of azimsulfuron on iron(III)-rich soil colloids
Authors:Pinna M Vittoria  Pusino Alba  Gessa Carlo
Institution:Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Università di Sassari, Viale Italia 39, 07100 Sassari, Italy.
Abstract:The sorption of N-(4,6-dimethoxypyrimidin-2-yl)amino]carbonyl]-1-methyl-4-(2-methyl-2H-tetrazole-5-yl)1H-pyrazole-5-sulfonamide (AZS) on an iron oxide, iron(III)-humate, and an Fe3+-saturated clay was studied using a batch equilibrium method. Generally, 20 mg of each colloid was equilibrated with 20 mL of AZS solution (1.5-12.7 microM). The sorption on iron-montmorillonite and iron oxide was rapid, and the equilibrium was attained within 1.5 and 5 h, respectively. In the case of Fe-saturated humic acid the equilibrium time was 20 h. After equilibration, the phases were centrifuged (19000g, 15 min) and the supernatant was sampled and analyzed by HPLC. The values of Freundlich constants indicate that iron oxide (Kads = 199.5) shows the highest sorptive capacity toward AZS, followed by iron(III)-clay (Kads = 146.6) and iron(III)-humate (Kads = 108.2). With elapsing time, AZS degradation was observed in all colloidal suspensions. Iron-humate (t(1/2) = 136 h) is most effective in promoting AZS degradation, followed by iron oxide (t(1/2) = 204 h) and iron-clay (t(1/2) = 385 h). The metabolites 2-amino-4,6-dimethoxypyrimidine and 1-methyl-4-(2-methyl-2H-tetrazole-5-yl)-1H-pyrazole-5-sulfonamide, arising from a hydrolytic cleavage of the sulfonylurea bridge, were the only byproducts observed. A Fourier transform infrared study suggests that the sorption of AZS on iron-clay involves the protonation of one of the two basic pyrimidine nitrogens induced by the acidic water surrounding the saturating Fe3+ ions. Instead, the formation of a six-membered chelated complex favors the sorption of AZS on iron oxide.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号