Abstract: | In acidic media, hydrolysis of chlorsulfuron and metsulfuron-methyl occurs via two consecutive reactions which were followed by ultraviolet spectrophotometry. For these two reactions, the pseudo-first-order rate constants increase proportionally to the concentration of hydronium ion in the more acidic media and to the square of this concentration at higher pH values. A kinetic study by HPLC shows that the first reaction leads to the formation of 4-methoxy-6-methyl-1,3,5-triazin-2-amine and (o-chlorophenylsulfonyl) carbamic acid for chlorsulfuron or (o-methoxycarbonylphenylsulfonyl) carbamic acid for metsulfuronmethyl. The second reaction is the conversion of these sulfonylcarbamic acids to sulfonamides and carbon dioxide. The complete lack of saccharin and of o-sulfamoyl benzoic acid proves that the ester function of the methoxycarbonyl group is stable. The lack of general acid-base catalysis and a solvent deuterium isotope effect less than unity are consistent with a rate-determining cleavage of the protonated substrate. In the basic pH range (10–14) a single reaction occurs, the nucleophilic substitution of the methoxy group on the triazine by a hydroxide group. |