首页 | 本学科首页   官方微博 | 高级检索  
     

百菌清与丙溴磷混合水溶液的光化学降解
引用本文:王鑫, 张南, 杨亚威, 史陶中, 马鑫, 吕培, 花日茂. 百菌清与丙溴磷混合水溶液的光化学降解[J]. 农药学学报, 2023, 25(5): 1173-1178. DOI: 10.16801/j.issn.1008-7303.2023.0054
作者姓名:王鑫  张南  杨亚威  史陶中  马鑫  吕培  花日茂
作者单位:1.安徽农业大学 资源与环境学院,安徽省农产品质量安全重点实验室,合肥 230036
基金项目:国家自然科学基金项目(31972314).
摘    要:为明确水体中百菌清和丙溴磷的混合光降解行为,利用模拟光源 (高压汞灯) 研究了百菌清和丙溴磷混合水溶液中的光降解作用和光降解产物。结果表明:在高压汞灯照射下,浓度为3 μmol/L的百菌清光降解的半衰期为122.46 min,浓度为3 、6 和9 μmol/L的丙溴磷光解半衰期分别为87.85、86.11和87.63 min。在3 μmol/L的百菌清水溶液中分别添加1、2和3倍 (3、6 和9 μmol/L) 的丙溴磷后,百菌清的光降解半衰期分别降至64.54、38.25和33.05 min,光降解速率分别提高了1.90、3.20和3.71倍;而丙溴磷的光降解半衰期分别为85.57、83.51和84.32 min,降解速率均未发生显著变化。表明丙溴磷对百菌清在纯水中的光降解具有明显的促进效应,且降解速率与丙溴磷浓度呈正相关,而百菌清则对丙溴磷的光降解无影响。百菌清水溶液在单独光降解和加入丙溴磷后,其光降解产物均为4-羟基百菌清;而丙溴磷则产生了5种光降解产物,分别为4-溴-2氯苯基磷酸氢乙酯、O-(4-溴-2-氯苯基)-O-乙基-S-氢磷酸、O-(2-氯苯基)-O-乙基-S-丙基硫代磷酸酯、(2-氯-4-羟基苯基)邻乙基-S-丙基硫代磷酸酯和2-氯-4-溴苯酚。百菌清和丙溴磷的混合水溶液在光照下产生了更多的羟基自由基。该研究可为评估百菌清和丙溴磷复合污染对环境的生态毒性提供重要理论支撑。

关 键 词:百菌清  丙溴磷  光降解  水溶液  羟基自由基
收稿时间:2023-05-06

Evaluation of combinations of chlorothalonil with azoxystrobin,harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon
WANG Xin, ZHANG Nan, YANG Yawei, SHI Taozhong, MA Xin, LYU Pei, HUA Rimao. Photodegradation of the mixture of chlorothalonil and profenofos[J]. Chinese Journal of Pesticide Science, 2023, 25(5): 1173-1178. DOI: 10.16801/j.issn.1008-7303.2023.0054
Authors:WANG Xin  ZHANG Nan  YANG Yawei  SHI Taozhong  MA Xin  LYU Pei  HUA Rimao
Affiliation:1.Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
Abstract:The photodegradation behavior of the mixture of chlorothalonil and profenofos in water was investigated under high pressure mercury lamp (HPML). The results showed that the half-life of chlorothalonil at 3 μmol/L was 122.46 min under the HPML irradiation, and the half-lives of chlorothalonil were 64.54, 38.25 and 33.05 min in the presence of 1, 2 and 3 equivalent of profenofos. The half-lives of 3, 6, and 9 μmol/L profenofos were 87.85, 86.11 and 87.63 min, while they were 85.57, 83.51 and 84.32 min in the presence of chlorothalonil, respectively. This indicates that profenofos promoted the photodegradation of chlorothalonil in water and the promotion effect was increased as the concentration of profenofos increased. Chlorothalonil did not affect the photodegradation of profenofos. The main photodegradation product of chlorothalonil was 4-hydroxyl chlorothalonil with and without profennofos. Five photodegradation products of profenofos were detected, namely, 4-bromo-2-chlorophenyl hydrogen phosphate ethyl ester, O-(4-bromo-2-chlorophenyl)-O-ethyl-S-hydrogen phosphate, O-(2-chlorophenyl)-O-ethyl-S-propyl phosphorothioate, (2-chloro-4-hydroxyphenyl)-O-ethyl-S-propyl phosphorothioate, and 2-chloro-4-bromophenol. Profenofos promoted the degradation of chlotothalonil via the generation of more hydroxyl radicals. This study provides important theoretical support for the evaluation of the environmental ecotoxicity of combined pollution of chlorothalonil and profenofos.
Keywords:chlorothalonil  profenofos  photodegradation  aqueous solution  hydroxy radical
点击此处可从《农药学学报》浏览原始摘要信息
点击此处可从《农药学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号