首页 | 本学科首页   官方微博 | 高级检索  
     


Root growth,soil water content and yield of barley under different tillage systems on two soils in semiarid conditions
Affiliation:1. Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia;2. Department of Natural Resources and Mines, 203 Tor Street, Toowoomba, 4350, Queensland, Australia;3. School of Agriculture and Food Sciences, The University of Queensland, Toowoomba, Queensland 4350, Australia;4. Soil and Environmental Sciences, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
Abstract:An experiment was conducted on two soils in a semiarid area in the Spain’s Ebro valley. Soil A was a Fluventic Xerochrept of 120 cm depth and Soil B was a Lithic Xeric Torriorthent of 30 cm depth. Three tillage systems were compared in Soil A: subsoiler tillage, minimum tillage and no-tillage, and two (minimum tillage and no-tillage) in Soil B. The experiment was repeated for 5 years on Soil A and 3 years on Soil B. Root length density, volumetric water content and dry matter were measured at important developmental stages. Yield was determined at harvest. In Soil A, root length density and volumetric water content were significantly greater for no-tillage than for subsoiler or minimum tillage (up to 1.4 cm cm−3 and 5%, respectively), mainly in the upper part of the soil profile. At lower depths, differences as great as 0.8 cm cm−3 and 6% were also found. Mean yield (4 years) was similar between no-tillage (3608 kg ha−1) and minimum tillage (3508 kg ha−1), and significantly smaller for subsoiler tillage (3371 kg ha−1). In Soil B, no differences were observed between tillage systems for volumetric water content. Significant interactions between tillage and year were found for root length density, dry matter and yield. Mean yield (3 years) was not significantly different for minimum tillage (1806 kg ha−1) and no-tillage (1867 kg ha−1). The results in Soil A showed that surface conditions are of major importance in the water content of the soil and determined the differences among tillage systems. No-tillage favoured greater and deeper water accumulation in the soil profile and greater root growth. This makes this system potentially better for years of low rainfall. In Soil B no tillage system proved to be better because of the low water-holding capacity of this soil (56 mm).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号